Ε

Name:

CC Geometry

Triangle Proofs Test Review

9) In the accompanying diagram of quadrilateral QRST, $\overline{RS} \cong \overline{ST}$, $\overline{SR} \perp QR$, and $\overline{ST} \perp Q\overline{T}$.

Which method of proof may be used to prove $\triangle QRS \cong \triangle QTS$?

A)ASAC)AASB)HLD)SAS

Questions 11 and 12 refer to the following:

Given the partial proof below.

10) In the diagram below, $\triangle PQR \cong \triangle STR$.

Complete the statement $\angle Q \cong \underline{?}$.

A) ∠S	C)	∠TRS
A) ZS	C)	$\angle 1$ KS

B) ∠PRQ D) ∠T

P			Ų	Given : $\overline{PQ} = \overline{UT}$, $\overline{PS} = \overline{UR}$, $\overline{QR} = \overline{ST}$			
		/		Prove: △VRS is isosceles			
	\rightarrow	/		STATEMENT		REASON	
Q	R	s	<u> </u>	(1) $\overline{PQ} = \overline{UT}, \overline{PS} = \overline{UR},$ $\overline{QR} = \overline{ST}$	(1)	Given	
				(2) $\overrightarrow{RS} \cong \overrightarrow{RS}$ (3)	(2)	Reflexive Property of Equality	
				(4) $\overline{QS} \cong \overline{TR}$	- (0)		
				(5) $\triangle PQS \cong \triangle UTR$	(5)	SSS ≅ SSS	
				(6) ∠PSQ ≅ ∠URT	(6)	CPCTC	
				(7) $\overline{VR} \cong \overline{VS}$	(7)	If two \angle s of a \triangle are \cong , the sides opposite these \angle s are \cong .	
				(8) $\triangle VRS$ is isosceles	(8)	An isosceles \triangle is a \triangle with two \cong sides.	

11) What could be the statement for reason number 3 in the given proof?

- A) PV + VS = UV + VR
- B) QR + RS = TS + RS

C) $\angle PQR + \angle VRS = \angle UTR + \angle VSR$

- D) PS VS = UR VR
- 12) What could be the reason for statement number 4 in the given proof?
 - A) Reflexive Property of Equality
 - B) Halves of equals are equal.
 - C) The whole is equal to the sum of its parts.
 - D) An isosceles triangle is a triangle with two congruent legs.

13) Supply the missing reason(s) for the given proof.

14)

15)

16)

Given: $\frac{\overline{PS}}{PS} \perp \overline{QR}$ PS bisects $\angle QPR$

Prove: $\angle Q \cong \angle R$

17)

Prove: $\overline{BD} \cong \overline{AC}$

19)

18)

Prove: $\overline{ST} \cong \overline{CG}$

Given:
$$\frac{\overline{AB}}{\overline{BD}} \cong \overline{\overline{AC}}$$

Prove: \overline{AD} bisects $\angle BAC$

21)

20)

Prove: V is the midpoint of \overline{TU}

- 1) A 2) A 3) C 4) A 5) B
- 6) A 7) A 8) C 9) B 10) D
- 11) B 12) C
- 13) Answers vary.
- 14) Answer is a ASA proof.
- 15) Answer is an ASA proof.
- 16) Answer is an ASA proof.
- 17) Answer is an AAS proof.
- 18) Answer is a proof.
- 19) Answer is a proof.
- 20) Answer is a SSS proof.
- 21) Answer is a proof.