

Date: \qquad

Review for Triangle Proofs Quiz
In 1-9, each figure shows two triangles and congruent parts have been marked. Identify the postulate (SSS, SAS, ASA, AAS or HL) that can be used to prove that the triangles are congruent, or write "cant be done".
1.

Cant be done
4.

gAS
7.

Cant be done
2.

ASA
5.

mAS
8.

9.

gas
10. Name the sides that would have to be congruent to use the SSS congruence postulate.

$\overline{A C} \cong \overline{D F}$.
11. Name the sides that would have to be congruent to use the SAS congruence postulate.

12. Name the angles that would have to be congruent to use the ASA congruence postulate.

$$
\angle A D B \cong \angle C B D
$$

13. Name the angles that would have to be congruent to use the SAS congruence postulate.

14. Name the angles that would have to be congruent to use the AAS congruence postulate.

$$
\angle B \cong \angle C
$$

15. Name the sides that would have to be congruent to use the SAS congruence postulate.

$$
\sqrt{O} \cong \overline{Q R}
$$

Name the congruent triangles.
16. $\triangle O G D \cong \triangle P R C$

18. $\triangle L I N \cong \triangle A R$

17. $\triangle R A C \cong \triangle Q \in G$

19. $\triangle F O X \cong \triangle B X O$

II. Name the congruent triangle and the congruent parts..
20.

$\triangle F G H \cong \triangle$ FEI

$$
\begin{array}{ll}
\measuredangle E F I \cong \measuredangle G F H & \overline{F G} \cong \overline{F E} \\
\measuredangle G \cong \measuredangle E & \overline{G H} \cong \overline{E I} \\
\measuredangle H \cong \measuredangle I & \overline{F H} \cong \overline{F I}
\end{array}
$$

Use the congruency statement to fill in the corresponding congruent parts.

$$
\begin{array}{llll}
\text { 21. } \triangle E F I \cong \triangle H G I & \measuredangle E \cong \measuredangle H & \overline{F E} \cong \overline{G H} & \measuredangle E F I \cong \measuredangle H G I \\
& \overline{F I} \cong \overline{G I} & \measuredangle F I E \cong \measuredangle G I H & \overline{I E} \cong \overline{I H}
\end{array}
$$

$22 . \triangle P Q R \cong \triangle M N R$. Find x .

$$
180-125=55^{\circ}
$$

$$
x=55^{\circ}
$$

23. $\triangle A B C \cong A D C$. Find y.

$$
\begin{gathered}
\frac{3 y}{3}=\frac{21}{3} \\
y=7
\end{gathered}
$$

(1) $\angle P$ and $\angle M$ are right anglo

$$
\overline{P Q} \cong \overline{M N}, \overline{Q R} \cong \overline{N R}
$$

(2) $\triangle P Q R$ and $\triangle M N R$ are right Δ 's
(3) $\triangle P Q R \cong \triangle M N R$
(1) Given
(2) A right 1 has one right angle
(3) HL
25. Given: $\triangle A B C$ is isosceles with vertex $B . D$ is the midpoint of $\overline{A C}$.

Prove: $\triangle A B D \cong \triangle C B D$

Statements	Reasons
(1) $\triangle A B C$ is isosceles with	(1) Giver
vertex $B_{1} D$ is	
midpoint of $\overline{A C}$	An isosceles \triangle has

(2) $\overline{A B} \cong \overline{C B}$
(3) $\overline{A D} \cong \overline{C D}$
(4) $\overline{B D} \cong \overline{B D}$
(5) $\triangle A B D \cong \triangle C B D$
(2) An isosceles Δ has $2 \cong$ sides
(3) A midpoint divides a segment into 2 \simeq segments
(4) Reflexive Property
(5) SSS
26. Given: $\overline{D B} \perp \overline{A B} \cdot \overline{A C} \perp \overline{D C}, \overline{B E} \cong \overline{C E}$

Prove: $\triangle A B E \cong \triangle D C E$

Statements	Reasons
$\overline{\overline{A B}}, \overline{A C} \perp \overline{D C}$	(1) Giver

$$
\overline{B E} \cong \overline{C E}
$$

(2) $\angle B$ and $\angle C$ arc right L's
(3) $\angle B \cong \angle C$
(4) $\angle B E A \cong \angle C E D$
(5) $\triangle A B E \cong \triangle D C E$
(2) 1 lines form right L's
(3) All right $L s$ are \cong
(4) Vertical angles are \cong
(5) ASA
27. Given: $\overline{P Q}$ bisects $\overline{M N}, \overline{P Q} \perp \overline{M N}$

Prove: $\triangle M P Q \cong \triangle N P Q$

Statements	Reasons
$(1) \overline{P Q}$ bisects $\overline{M N}$,	(1) Given
$\overline{P Q} \perp \overline{H N}$	

(2) Q is midpoint of $\overline{\mu N}$
(3) $\overline{N Q} \cong \overline{M Q}$
(4) $\angle P Q N$ and $\angle P Q M$ are right L 's
(5) $\angle P Q N \cong \angle P Q M$
(6) $\overline{P Q} \cong \overline{P Q}$
(7) $\triangle M P Q \cong \triangle N P Q$
28. Given: $\overline{A C}$ bisects $\angle B C D, \angle B \cong \angle D$

Prove: $\triangle A B C \cong \triangle A D C$
(7) SAS
(1) $\overline{A C} \frac{\text { Statements }}{\text { bisects } \angle B C D}$ $\angle B \cong \angle D$
(2) $\angle B C A \subseteq \angle D C A$
(3) $\overline{A C} \cong \overline{A C}$
(4) $\triangle A B C \cong \triangle A D C$

(2) A segment bisector intersects a segment at its midpoint
(3) A midpoint creates $2 \cong$ segments
(4) \perp lines form right L 's
(3) All right L's are \cong
(6) Reflexive Property

Reasons
(1) Given
(2) Angle bisector creates $2 \cong$ angles
(3) Reflexive property
(4) AAS

