Name: \qquad
CC Geometry

Unit 2 Test Review

Transformations, Rigid Motions and Congruence

1) Which figure does not have line symmetry?
A)

B)

C)

D)

2) What is the image of $\mathrm{A}(3,4)$ under $R_{90^{\circ}}$?
A) $(-4,3)$
B) $(-3,-4)$
C) $(-4,-3)$
D) $(3,-4)$
3) What is the image of the point $(-3,-1)$ under the translation that shifts (x, y) to $(x-2, y+4)$?
A) $(-1,-5)$
B) $(-5,3)$
C) $(-5,-5)$
D) $(-1,3)$
4) Which rotation about the origin is equivalent to $R_{-200^{\circ}}$?
A) $R_{-160^{\circ}}$
B) $R_{200^{\circ}}$
C) $R_{160^{\circ}}$
D) $R_{560^{\circ}}$
5) Refer to the diagram below.

What two transformations took triangle $A B C$ to triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$?
A) a rotation of 180° about the origin followed by a translation of $(-2,-3)$
B) a translation of ($1,-2$) followed by a reflection over the x-axis
C) a translation of $(1,-3)$ followed by a rotation of 180° about point A
D) a reflection over the x-axis followed by a translation of (1,-2)
6) Which figure has 60° rotational symmetry?
A) regular hexagon
B) square
C) equilateral triangle
D) regular octagon
7) Which letter has point symmetry?
A) T
B) H
C) C
D) E
8) In the accompanying diagram, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$.

Which type of transformation is shown in the illustration?
A) dilation
B) rotation
C) line reflection
D) translation
9) If $\triangle J K L \cong \triangle M N O$, which statement is always true?
A) $\angle K J L \cong \angle M O N$
B) $\overline{J K} \cong \overline{O N}$
C) $\angle K L J \cong \angle N M O$
D) $\overline{J L} \cong \overline{M O}$
13) The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?
A) measure of $\angle A$
C) length of $\overline{A B}$
B) parallelism of $\overline{A B}$ and $\overline{C D}$
D) slope of $\overline{A B}$
14) In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?
A) $\overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$
B) $\overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
C) $\overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
D) $\overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
15) Which figures have both point symmetry and line symmetry?

A) none of the figures
B) B and C, only
C) all of the figures
D) A and C, only
16) Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel to $\overline{P^{\prime} Q^{\prime}}$?
A) $\overline{T^{\prime} S^{\prime}}$
B) $R^{\prime} S^{\prime}$
C) $\overline{T^{\prime} P^{\prime}}$
D) $\overline{R^{\prime} Q^{\prime}}$
17) Which polygon has rotational symmetry of 90° ?
A) regular pentagon
B) equilateral triangle
C) regular hexagon
D) square
18) Under a translation, the image of point $(3,2)$ is $(-1,3)$. What are the coordinates of the image of point $(-2,6)$ under the same translation?
19) After a reflection over a line, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Explain why triangle $A B C$ is congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$.
20) A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself. [Show all work.]
21) In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.
22) In the accompanying diagram, $\overline{A C}$ and $\overline{D E}$ bisect each other at B.

Prove that $\triangle \mathrm{ABD} \cong \triangle C B E$ using transformation geometry axioms and isometry properties.
23) Triangle $T A P$ has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$.

On the set of axes below, graph and label $\Delta T^{\prime} A^{\prime} P^{\prime}$, the image of $\triangle T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

24) Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\Delta X Y Z$.

25) The grid below shows $\triangle A B C$ and $\triangle D E F$.

(a) Let $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$ after a rotation about point A. Determine and state the location of B^{\prime} if the location of point C^{\prime} is $(8,3)$. [Explain your answer.]
(b) Is $\triangle D E F$ congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$? [Explain your answer.]

1) C
2) A
3) B
4) C
5) D
6) A
7) B
8) C
9) D
10) A
11) B
12) C
13) D
14) A
15) D
16) A 17) D
17) $(-6,7)$
18) SAMPLE EXPLANATION: Reflections are rigid motions, and during rigid motions, distances remain the same. So, $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$ and $\overline{B C} \cong \overline{B^{\prime} C^{\prime}}$ and $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$. The triangles are congruent by SSS.
19)

60°
WORK SHOWN: $\frac{360}{6}=60$
21) SAMPLE EXPLANATION: $\triangle X Y Z$ is the image of $\triangle A B C$ after a rotation of 180° about the origin. In any rotation, distance is preserved because rotation is a rigid motion. Thus, the triangles are congruent.
22) Answer is a proof.

$$
(x, y) \rightarrow(x-5, y-1)
$$

$T(-1,4) \longrightarrow T^{\prime}(-6,3)$
$A(2,4) \longrightarrow A^{\prime}(-3,3)$ $P(2,0) \longrightarrow P^{\prime}(-3,-1)$
23)

24) $\quad X^{\prime}(5,1), Y^{\prime}(4,4)$, and $Z^{\prime}(7,4)$

WORK SHOWN:

25) (a) $\quad B^{\prime}(7,1)$

SAMPLE EXPLANATION: The angle of rotation that took C to C^{\prime} was 90° counter-clockwise. So the angle of rotation that takes B to B^{\prime} is also 90°. The slope of $A B=-\frac{5}{4}$. The slope of $A B^{\prime}$ (the line perpendicular to $A B$) $=\frac{4}{5}$. So the coordinate of B^{\prime} is $(5+2,4-3)=(7,1) ;$
(b) Yes

SAMPLE EXPLANATION: When $\Delta A^{\prime} B^{\prime} C^{\prime}$ is reflected over the line $x=-1$, it will map the $\triangle D E F$. Since a reflection is a rigid motion, distance is preserved. Therefore, $\triangle D E F \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ by SSS.

