Name: _

CC Geometry

Unit 2 Test Review Transformations, Rigid Motions and Congruence

1) Which figure does *not* have line symmetry?

2) What is the image of A(3,4) under $R_{90^{\circ}}$?

A)	(-4,3)	C)	(-4,-3
B)	(-3,-4)	D)	(3,-4)

- 3) What is the image of the point (-3,-1) under the translation that shifts (x,y) to (x 2,y + 4)?
 - A) (-1,-5) C) (-5,-5)
 - B) (-5,3) D) (-1,3)
- 4) Which rotation about the origin is equivalent to R_{-200} ?
 - A) $R_{-160^{\circ}}$ C) $R_{160^{\circ}}$
 - B) R_{200°} D) R_{560°}

5) Refer to the diagram below.

What two transformations took triangle *ABC* to triangle *A*"*B*"*C*"?

- A) a rotation of 180° about the origin followed by a translation of (-2,-3)
- B) a translation of (1,-2) followed by a reflection over the x-axis
- C) a translation of (1,-3) followed by a rotation of 180° about point A
- D) a reflection over the x-axis followed by a translation of (1,-2)
- 6) Which figure has 60° rotational symmetry?
 - A) regular hexagon
 - B) square
 - C) equilateral triangle
 - D) regular octagon

- 7) Which letter has point symmetry?
 - A) **T** C) **C**
 - ^{B)} **H** ^{D)} **E**
- 8) In the accompanying diagram, $\Delta A'B'C'$ is the image of ΔABC .

Which type of transformation is shown in the illustration?

- A) dilation
- B) rotation
- C) line reflection
- D) translation
- 9) If $\Delta JKL \cong \Delta MNO$, which statement is always true?
 - A) $\angle KJL \cong \angle MON$
 - B) $\overline{JK} \cong \overline{ON}$
 - C) $\angle KLJ \cong \angle NMO$
 - D) $\overline{JL} \cong \overline{MO}$

10) In the diagram below, $\triangle A'B'C'$ is a transformation of $\triangle ABC$, and $\triangle A''B''C''$ is a transformation of $\triangle A'B'C'$.

The composite transformation of $\triangle ABC$ to $\triangle A''B''C''$ is an example of a

- A) translation followed by a reflection
- B) reflection followed by a rotation
- C) reflection followed by a translation
- D) translation followed by a rotation
- 11) Which figure has 120° rotational symmetry?
 - A) rhombus
 - B) equilateral triangle
 - C) regular pentagon
 - D) square
- 12) The image of A(-1,3) under the translation $T_{2,1}$
 - is A) (-3,2) B) (0,5) C) (1,4) D) (-2,3)

The rectangle ABCD shown in the diagram below will be reflected across the x-axis. 13)

What will not be preserved?

- A) measure of $\angle A$
- B) parallelism of AB and CD

- C) length of \overline{AB}
- slope of AB D)

14) In the diagram below, $\triangle ABC \cong \triangle XYZ$.

Which two statements identify corresponding congruent parts for these triangles?

- A) $BC \cong YZ$ and $\angle A \cong \angle X$
- B) $\overline{AB} \cong \overline{XY}$ and $\angle C \cong \angle Y$
- C) $\overline{AB} \cong \overline{YZ}$ and $\angle C \cong \angle X$
- D) $\overline{BC} \cong \overline{XY}$ and $\angle A \cong \angle Y$

15) Which figures have both point symmetry and line symmetry?

- B and C, only B)
- all of the figures C)
- A and C, only D)
- Pentagon PQRST has \overline{PQ} parallel to \overline{TS} . After a 16) translation of $T_{2,-5}$, which line segment is parallel to $\overline{P'Q'}$?

A)
$$\overline{T'S'}$$

B) $\overline{R'S'}$
C) $\overline{T'P'}$
D) $\overline{R'Q}$

- 17) Which polygon has rotational symmetry of 90°? 20)
 - A) regular pentagon
 - B) equilateral triangle
 - C) regular hexagon
 - D) square
- 18) Under a translation, the image of point (3,2) is (-1,3). What are the coordinates of the image of point (-2,6) under the same translation?

19) After a reflection over a line, $\triangle A'B'C'$ is the image of $\triangle ABC$. Explain why triangle ABC is congruent to triangle A'B'C'.

A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself. [Show all work.]

21) In the diagram below, $\triangle ABC$ and $\triangle XYZ$ are graphed.

Use the properties of rigid motions to explain why $\triangle ABC \cong \triangle XYZ$.

22) In the accompanying diagram, \overline{AC} and \overline{DE} bisect each other at B.

Prove that $\triangle ABD \cong \triangle CBE$ using transformation geometry axioms and isometry properties.

23) Triangle *TAP* has coordinates *T*(-1,4), *A*(2,4), and *P*(2,0).

On the set of axes below, graph and label $\Delta T' A' P'$, the image of ΔTAP after the translation $(x,y) \rightarrow (x - 5, y - 1)$.

24) Triangle XYZ, shown in the diagram below, is reflected over the line x = 2. State the coordinates of $\Delta X' Y' Z'$, the image of ΔXYZ .

25) The grid below shows $\triangle ABC$ and $\triangle DEF$.

- (a) Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is (8,3). [Explain your answer.]
- (**b**) Is $\triangle DEF$ congruent to $\triangle A'B'C'$? [Explain your answer.]

- 1) C 2) A 3) B 4) C 5) D
- 6) A 7) B 8) C 9) D 10) A
- 11) B 12) C 13) D 14) A 15) D
- 16) A 17) D
- 18) (-6,7)
- 19) SAMPLE EXPLANATION: Reflections are rigid motions, and during rigid motions, distances remain the same. So, $\overline{AB} \cong \overline{A'B'}$ and $\overline{BC} \cong \overline{B'C'}$ and $\overline{AC} \cong \overline{A'C'}$. The triangles are congruent by SSS.
- 20) 60°

WORK SHOWN: $\frac{360}{6} = 60$

- 21) SAMPLE EXPLANATION: ΔXYZ is the image of ΔABC after a rotation of 180° about the origin. In any rotation, distance is preserved because rotation is a rigid motion. Thus, the triangles are congruent.
- 22) Answer is a proof.

SAMPLE EXPLANATION: The angle of rotation that took *C* to *C'* was 90° counter-clockwise. So the angle of rotation that takes *B* to *B'* is also 90°. The slope of $\overline{AB} = -\frac{5}{4}$. The slope of $\overline{AB'}$ (the line perpendicular to \overline{AB}) = $\frac{4}{5}$. So the coordinate of *B'* is (5 + 2, 4 - 3) = (7, 1);

(b) Yes

SAMPLE EXPLANATION: When $\triangle A'B'C'$ is reflected over the line x = -1, it will map the $\triangle DEF$. Since a reflection is a rigid motion, distance is preserved. Therefore, $\triangle DEF \cong \triangle A'B'C'$ by SSS.