Name:

CC Geometry (H)

- Unit 1 Test Review
- In $\triangle QRS$, $m \angle Q = x^\circ$, $m \angle R = (8x 40)^\circ$, and 1) $m \angle S = 2x^{\circ}$. Which type of triangle is $\triangle QRS$?
 - A) right C) acute
 - B) isosceles D) obtuse
- In the figure below, $AB \cong BC$. 2)

If m \perp BCD = 130°, what is m \perp ABC?

- 130° 50° A) C)
- B) 80° D) 100°
- In the accompanying diagram of $\triangle ABC$, side BC 3) is extended to D, $m \angle B = 2y^{\circ}$, $m \angle BCA = 6y^{\circ}$, and m \angle ACD = 3y°.

What is $m \angle A$?

- 15° 24° A) C) D) 20°
- 17° B)

- Two angles of a triangle have the measures of 4) 55° and 65°. Which could not be a measure of an exterior angle of the triangle?
 - 120° A) C) 130°
 - B) 115° D) 125°
- An exterior angle at the base of an isosceles 5) triangle measures 140°. What is the measure of the vertex angle?
 - 70° 40° A) C)
 - D) 140° 100° B)
- In isosceles triangle ABC, $\overline{AB} \cong \overline{BC}$ and 6) $m \angle B = 50^{\circ}$. What is the measure of an exterior angle at vertex C?
 - 115° A) 65° C)
 - B) 130° D) 50°
- 7) In the accompanying diagram, how is it possible to determine that lines A and B are parallel?

- A pair of congruent corresponding angles is A) shown.
- A pair of congruent alternate exterior B) angles is shown.
- C) A pair of congruent alternate interior angles is shown.
- D) A pair of congruent vertical angles is shown.

8) In the accompanying diagram, parallel lines \overrightarrow{AB} and \overrightarrow{CD} are cut by transversal \overrightarrow{FE} at points G and H, respectively.

If $m \angle BGE = (2x + 25)^{\circ}$ and $m \angle DHF = (3x - 50)^{\circ}$, what is an equation that can be used to find the value of x?

- A) 2x + 25 + 3x 50 = 90
- B) 2(x + 25) = 3(x 50)
- C) 2x + 25 = 3x 50
- D) 2x + 25 + 3x 50 = 180
- 9) In the diagram below, two parallel lines are cut by a transversal.

What is the value of b?

- A) 4 C) 2
- B) 9 D) 40

10) In the accompanying diagram, line \pounds is parallel to line *m*, and lines *s* and *t* are transversals that intersect at a point on line *m*.

Which statement must be true?

- A) m∠1 = m∠2 + m∠3
- B) m∠4 = m∠2
- C) m∠5 = m∠2 + m∠3
- D) m∠1 = m∠4
- 11) In the diagram below, $\overrightarrow{AB} \parallel \overrightarrow{CD}$, $m \angle x = 68^\circ$, and $m \angle y = 117^\circ$.

What is $m \angle z$?

- A) 112° C) 131°
- B) 117° D) 49°

14) In $\triangle ABC$, \overline{AC} is extended through C to D. If $m \angle BCD = (5x - 4)^\circ$, $m \angle BAC = (x + 30)^\circ$, and $m \angle ABC = (x + 20)^\circ$, what is the value of x? 15) In the accompanying diagram, $\overrightarrow{RS} \parallel \overrightarrow{TU}$ and $\overrightarrow{GH} \parallel \overrightarrow{MN}$.

If $m \angle x = 115^\circ$, find $m \angle y$.

16) In the accompanying diagram, the bisectors of $\angle A$ and $\angle B$ in acute triangle ABC meet at D, and $m\angle ADB = 130^{\circ}$.

Find m∠C.

In the figure below, \overline{DB} bisects $\angle ADC$ and 17) $\overline{\text{DB}} \cong \overline{\text{DC}}$. Find the values of x and y.

In the accompanying diagram, \overrightarrow{AB} is parallel to 20) \overrightarrow{CD} , \overrightarrow{AED} is a transversal, and \overrightarrow{CE} is drawn.

If m \angle CED = 60°, m \angle DAB = 2x°, and $m \angle DCE = 3x^\circ$, find x.

In the diagram below, $\mathcal{L}_1 \parallel \mathcal{L}_2$. 18)

If $m \angle 3 = 35^{\circ}$ and $m \angle 2 = 110^{\circ}$, find $m \angle 1$.

19)

Name the segments, if any, that are parallel if ∠4 ≅ ∠8.

In the figure below, $\overrightarrow{RS} \parallel \overrightarrow{PQ}$. 21)

Find the m∠PRQ.

Questions 22 through 24 refer to the following:

In the figure below, $\overrightarrow{AB} \parallel \overrightarrow{CD}$.

$$\begin{array}{c|c} \mathbf{E}^{\mathbf{A}} \\ \mathbf{A} & \frac{1/2}{3/4} \\ \mathbf{C} & \frac{5}{6} & \mathbf{D} \\ \hline & \frac{7}{8} \\ \mathbf{F} \end{array}$$

22) If $m \angle 4 = (2x + 50)^{\circ}$ and $m \angle 5 = (5x - 40)^{\circ}$, find the value of x.

23) If $m \angle 3 = (7x + 1)^{\circ}$ and $m \angle 7 = (5x + 19)^{\circ}$, find the value of *x*.

24) If $m \angle 4 = (2x + 10)^{\circ}$ and $m \angle 6 = (3x - 20)^{\circ}$, find the $m \angle 4$.

- 1) D 2) B 3) D 4) C 5) B
- 6) A 7) B 8) D 9) A 10) A
- 11) C
- 12) 125°
- 13) 85°
- 14) 18
- 15) 65°
- 16) 80°
- 17) x = 25, y = 10
- 18) 75°
- 19) AD || BC
- 20) 24
- 21) 98°
- 22) 30
- 23) 9
- 24) 86°