Name: \qquad
CC Geometry

Unit 1 Test Review

Questions 1 through 3 refer to the following:

1) $\quad \angle 1$ and $\angle 5$ can be classified as
A) alternate interior angles
B) corresponding angles
C) interior angles on the same side of the transversal
D) none of these
2) $\quad \angle 6$ and $\angle 7$ can be classified as
A) alternate interior angles
B) corresponding angles
C) interior angles on the same side of the transversal
D) none of these
3) $\angle 3$ and $\angle 5$ can be classified as
A) alternate interior angles
B) corresponding angles
C) interior angles on same side of transversal
D) none of these
4) In the accompanying diagram, parallel lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are cut by transversal $\stackrel{\rightharpoonup F}{ }$ at points G and H, respectively.

If $\mathrm{m} \angle B G E=(2 x+25)^{\circ}$ and $m \angle D H F=(3 x-50)^{\circ}$, what is an equation that can be used to find the value of x ?
A) $2 x+25=3 x-50$
B) $2 x+25+3 x-50=180$
C) $2 x+25+3 x-50=90$
D) $2(x+25)=3(x-50)$
5) Which one of the following pairs of angles x and y are supplementary?
A) $\mathrm{m} \angle x=113^{\circ}, \mathrm{m} \angle y=67^{\circ}$
B) $\mathrm{m} \angle x=180^{\circ}, \mathrm{m} \angle y=180^{\circ}$
C) $\mathrm{m} \angle x=76^{\circ}, \mathrm{m} \angle y=14^{\circ}$
D) $\mathrm{m} \angle x=140^{\circ}, \mathrm{m} \angle y=190^{\circ}$
6) In isosceles triangle $A B C, \overline{A B} \cong \overline{B C}$ and $\mathrm{m} \angle \mathrm{B}=70^{\circ}$. What is the measure of an exterior angle at vertex C ?
A) 55°
B) 70°
C) 110°
D) 125°
7) An exterior angle at the base of an isosceles triangle measures 110°. What is the measure of the vertex angle?
A) 110°
B) 40°
C) 55°
D) 70°
8) Morita's teacher told her that angles A and B are complementary angles. Morita knows that the sum of angle A and angle B has to be ninety degrees. What other fact could Morita know about angles A and B ?
A) Both angles are right angles.
B) One angle is acute and the other is obtuse.
C) Both angles are obtuse angles.
D) Both angles are acute angles.
9) In the figure below, $\overline{\mathrm{AB}} \cong \overline{\mathrm{BC}}$.

If $\mathrm{m} \angle \mathrm{ABC}=80^{\circ}$, what is $\mathrm{m} \angle B C D$?
A) 50°
B) 80°
C) 130°
D) 100°
10) What is the value of x that makes $\ell_{1} \| \ell_{2}$?

A) 6
B) 12
C) 10
D) 20
11) What is the value of x that makes $\ell_{1} \| \ell_{2}$?

A) 23.3
B) 22
C) 11.3
D) 14
12) In the accompanying diagram, parallel lines $\overleftrightarrow{X Y}$ and $\overleftrightarrow{M N}$ are cut by transversal $\overleftrightarrow{T S}$ at points A and B, respectively.

If $\mathrm{m} \angle X A S=(5 x)^{\circ}$ and $\mathrm{m} \angle N B T=(9 x-40)^{\circ}$, what is $\mathrm{m} \angle N B T$?
A) 59°
B) 139°
C) 50°
D) 10°

Questions 13 and 14 refer to the following:
In the diagram below, $\overleftrightarrow{X G}$ and $\overleftrightarrow{E N}$ intersect at A, $\overrightarrow{A M} \perp \mathrm{XG}$, and $\mathrm{m} \angle \mathrm{GAN}=20^{\circ}$.

13) Name a pair of vertical angles.
14) Name two right angles.
15) Solve for x in the diagram below.

Questions 16 and 17 refer to the following:

16) If $\overrightarrow{B E}$ bisects $\mathrm{m} \angle A B D$ and $\mathrm{m} \angle E B D=32^{\circ}$, find $\mathrm{m} \angle A B D$.
17) If $\overrightarrow{B E}$ bisects $m \angle A B D, m \angle A B E=(y-8)^{\circ}$ and $m \angle A B D=(5 y-100)^{\circ}$, find the value of y.
18) $\angle 1$ and $\angle 2$ are complementary. If $\mathrm{m} \angle 1=(x+3)^{\circ}$ and $\mathrm{m} \angle 2=(4 x-8)^{\circ}$, find the value of x.
19) In the accompanying diagram, $\stackrel{\rightharpoonup}{A B}$ and $\overrightarrow{C D}$ intersect at E .

If $\mathrm{m} \angle \mathrm{AEC}=(2 x+40)^{\circ}$ and $\mathrm{m} \angle \mathrm{CEB}=(x+20)^{\circ}$, find x.
20) In the diagram below, $\ell_{1} \| \ell_{2}$.

If $m \angle 1=80^{\circ}$ and $m \angle 2=110^{\circ}$, find $m \angle 3$.

Questions 21 and 22 refer to the following:
In the diagram below, $\overleftrightarrow{\mathrm{QU}} \perp \overleftrightarrow{\mathrm{PS}}$.

21) If $m \angle Q V S=5 x^{\circ}$, find the value of x.
22) If $\mathrm{m} \angle 2=(3 x+16)^{\circ}$ and $\mathrm{m} \angle 5=(4 x+1)^{\circ}$, find the value of x.
23) In the accompanying diagram of $\triangle A D B, \overline{D C B}$, $\overline{C D} \cong \overline{C A}$, and $m \angle A C B=130^{\circ}$.

Find $m \angle D$.
24) If the measures of the angles of a triangle are represented by $x-5,2 x+3$, and $4 x$, find the measures of the three angles.
25) In $\triangle A B C$ below, $\overline{A D}$ bisects $\angle B A C$.

If $m \angle C=40^{\circ}$ and $m \angle B A C=28^{\circ}$, find $m \angle A D C$.
26) In the accompanying diagram of isosceles triangle $A B C, \overline{B A} \cong \overline{B C}$ and $\overline{D C}$ bisects $\angle A C B$.

If $m \angle A=36^{\circ}$, find $m \angle C D B$.
27) In $\triangle R S T, \overline{R S} \cong \overline{S T}$. If $m \angle R=(2 x-10)^{\circ}$ and $\mathrm{m} \angle \mathrm{S}=x^{\circ}$, find the value of x.
28) In the diagram below, $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$ and each is intersected by $M N$ at G and H, respectively. If $\mathrm{m} \angle B G H=(2 x+50)^{\circ}$ and $\angle C H G=(5 x-70)^{\circ}$, find $\mathrm{m} \angle B G H$. Show all your work.

1) B
2) D
3) C
4) B
5) A
6) D
7) B
8) D
9) C
10) C
11) D 12) C
12) $\angle \mathrm{EAX}, \angle \mathrm{NAG}$
13) $\angle \mathrm{MAG}, \angle \mathrm{MAX}$
14) 10
15) 64°
16) 28
17) 19
18) 40
19) 30°
20) 18
21) 15
22) 65°
23) $21^{\circ}, 55^{\circ}, 104^{\circ}$
24) 126°
25) 54°
26) 40
27) 130°

WORK SHOWN: $2 x+50=5 x-70,-3 x=-120, x=40, \mathrm{~m} \angle B G H=2(40)+50=130$

