Name:
CC Geometry Honors

Graded Take Home Assignment

You must show work on ALL questions (including multiple choice) to receive full credit on this assignment

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad
1) A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be
A) 150°
B) 225°
C) 10°
D) 252°
2) Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?
I. $\triangle A B C \cong \triangle A B C$
II. $\triangle A B C \sim \triangle A B C$
III. $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
IV. $A A^{\prime}=B B^{\prime}$
A) $I I$ and $I I I$, only
B) II, III, and IV, only
C) $I V$, only
D) I and II, only
3) Two right triangles must be congruent if
A) the areas are equal
B) the corresponding legs are congruent
C) the lengths of the hypotenuses are equal
D) an acute angle in each triangle is congruent
4) A parallelogram must be a rectangle when its
A) diagonals are perpendicular
B) opposite sides are parallel
C) diagonals are congruent
D) opposite sides are congruent
5) Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.

Which statement will allow Steve to prove $\overline{A B C D} \| \overline{E F G}$?
A) $\angle C B F \cong \angle G F C$
B) $\angle A B F \cong \angle B F C$
C) $\angle E F B \cong \angle C F B$
D) $\angle C F G \cong \angle F C B$
6) In the diagram below, $\overline{D E}, \overline{D F}$, and $\overline{E F}$ are midsegments of $\triangle A B C$.

The perimeter of quadrilateral $A D E F$ is equivalent to
A) $\frac{1}{2} A B+\frac{1}{2} A C$
B) $A B+B C+A C$
C) $A B+A C$
D) $2 A B+2 A C$
7) Given $\triangle A B C$ with $\mathrm{m} \angle B=62^{\circ}$ and side extended to D, as shown below.

What value of x makes $\overline{A B} \cong \overline{C B}$?
A) 118°
B) 121°
C) 62°
D) 59°
8) In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?
A) $\frac{E A}{E C}$
B) $\frac{E C}{E A}$
C) $\frac{B A}{E A}$
D) $\frac{E A}{B A}$
9) If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\Delta A^{\prime} B^{\prime} C^{\prime}$?
A) $3\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$
B) $3 A^{\prime} B^{\prime}=A B$
C) $\mathrm{m} \angle A^{\prime}=3(\mathrm{~m} \angle A)$
D) $B^{\prime} C^{\prime}=3 B C$
10) Using the information given below, which set of triangles can not be proven similar?
A)

B)

C)

D)

11) In triangle $C H R, O$ is on $\overline{H R}$, and D is on $\overline{C R}$ so that $\angle H=\angle R D O$.

If $R D=4, R O=6$, and $O H=4$, what is the length of $\overline{C D}$?
A) 11
B) $6 \frac{2}{3}$
C) $2 \frac{2}{3}$
D) 15
12) In the diagram of right triangle $A B C, \overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

If $A D=4$ and $D B=6$, which length of $\overline{A C}$ makes $\overline{C D} \perp \overline{A B}$?
A) $4 \sqrt{2}$
B) $2 \sqrt{6}$
C) $2 \sqrt{10}$
D) $2 \sqrt{15}$
13) In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which one of the following statements does not prove parallelogram $A B C D$ is a rhombus?
A) $\overline{A B} \cong \overline{B C}$
B) $\overline{A C} \perp \overline{D B}$
C) $\overline{A C}$ bisects $\angle D C B$.
D) $\overline{A C} \cong \overline{D B}$
14) In the diagram of right triangle $A D E$ below, $\overline{B C} \| \overline{D E}$.

Which ratio is always equivalent to the sine of $\angle A$?
A) $\frac{B C}{A B}$
B) $\frac{A D}{D E}$
C) $\frac{A B}{A C}$
D) $\frac{A E}{A D}$
15) Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?
A) no and $C^{\prime}(1,2)$
B) no and $D^{\prime}(2,4)$
C) yes and $A^{\prime}(6,2)$
D) yes and $B^{\prime}(-3,4)$
16) In the diagram below, $\overline{E F}$ intersects $\overline{A B}$ and $\overline{C D}$ at G and H, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$.

If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why $\overline{A B} \| \overline{C D}$.
17) The graph below shows $\triangle A B C$ and its image, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Describe a sequence of rigid motions which would map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
18) A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground. [Show all work.]
19) Given: Quadrilateral $A B C D$ is a paralle logram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E.

(a) Prove: $\angle A E D \cong \triangle C E B$
(b) Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.
20) Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm .

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter. [Show all work.]

