Name:
CC Geometry

Graded Review Assignment

You must show all work on every question to receive full credit (including multiple choice)

1) In $\triangle \mathrm{ABC}, \overline{\mathrm{BC}}$ is extended through C to D . If $\mathrm{m} \angle \mathrm{A}=65^{\circ}$ and $\mathrm{m} \angle \mathrm{B}=70^{\circ}$, what is the measure of $\angle \mathrm{DCA}$?
2) In the accompanying diagram, $\stackrel{\mathrm{ABC}}{\|} \stackrel{\rightharpoonup}{\mathrm{DEF}}$ and $\overline{\mathrm{BE}} \cong \overline{\mathrm{BF}}$.

If $\mathrm{m} \angle \mathrm{CBF}=40^{\circ}$, find $\mathrm{m} \angle \mathrm{BED}$.
3)

If $\overline{S T} \| \overline{Q R}, P Q=10, S Q=4$, and $P R=5$, find $\overline{P T}$. [Show all work.]
4) Which statement is always true?

1) The diagonals of a parallelogram are congruent.
2) The diagonals of a parallelogram bisect the angles of the parallelogram.
3) The diagonals of a parallelogram are perpendicular.
4) The diagonals of a parallelogram bisect each other.
5) What is the area of the shaded region of the figure below when the side of the square is 8 ?

6) $64-16 \pi$
7) $32-16 \pi$
8) $32-8 \pi$
9) $64-8 \pi$
10) In right triangle $A B C$, if $A B=13, B C=5$, and $A C=12$, then $\cos A$ is equal to
11) $\frac{5}{12}$
12) $\frac{12}{13}$
13) $\frac{13}{12}$
14) $\frac{5}{13}$
15) What value of x satisfies the equation $\sin (3 x+5)^{\circ}=$ $\cos (4 x+1)^{\circ}$?
16) 24
17) 30
18) 12
19) 4
20) The diagonals of a rhombus have lengths of 8 centimeters and 6 centimeters. The perimeter of the rhombus is
21) 20 cm
22) 14 cm
23) 25 cm
24) 5 cm
25) Which one of the following number of degrees would map a regular nonagon onto itself?
26) 40°
27) 200°
28) 280°
29) All of the rotations listed would carry the nonagon onto itself.
30) The ratio of two supplementary angles is $3: 6$. What is the measure of the smaller angle?
31) 20°
32) 60°
33) 10°
34) 30°
35) In the diagram below, $\overline{\mathrm{AB}}$ is parallel to $\overline{\mathrm{CD}}$. Transversal $\overline{\mathrm{HF}}$ intersects $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ at G and H , respectively.

If $\mathrm{m} \angle \mathrm{AGH}=4 x^{\circ}$ and $\mathrm{m} \angle \mathrm{GHD}=(3 x+40)^{\circ}$, what is the value of x ?

1) 160
2) 20
3) 80
4) 40
5) If the diagonals of a paralle logram are perpendicular and not congruent, then the parallelogram is
6) an isosceles trapezoid
7) a rhombus
8) a rectangle
9) a square
10) If the angles of a triangle are represented by x°, $(3 x+20)^{\circ}$, and $6 x^{\circ}$, the triangle must be
11) isosceles
12) acute
13) right
14) obtuse
15) In the diagram below, $\triangle A B C \sim \triangle R S T$.

Which one of the following statements is not true?

1) $\frac{A B}{B C}=\frac{S T}{R S}$
2) $\frac{A B}{R S}=\frac{B C}{S T}$
3) $\angle A \cong \angle R$
4) $\frac{A B+B C+A C}{R S+S T+R S}=\frac{A B}{R S}$
5) In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?

1) 4
2) 12
3) 24
4) 6
5) $\triangle C A T$ is the image of $\triangle D O G$ under a dilation of scale factor 6 . Which one of the following statements is true?
6) $6(C A)=D O$
7) $6(\mathrm{~m} \angle O)=\mathrm{m} \angle A$
8) $\mathrm{m} \angle O=6(\mathrm{~m} \angle A)$
9) $C A=6(D O)$
10) A boy flying a kite lets out 200 feet of string which makes an angle of 50° with the ground. How high is the kite above the ground (to the nearest foot)?
11) 238 ft
12) 128 ft
13) 153 ft
14) 261 ft
15) Line segment $A B$ is shown in the diagram below.

$$
X^{\prime}
$$

Which two sets of construction marks, labeled I, II, $I I I$, and $I V$, are part of the construction of the perpendicular bisector of line segment $A B$?

1) $I I$ and $I I I$
2) I and $I I I$
3) I and $I I$
4) $I I$ and $I V$
5) The art department at the Triangle University was charged with designing a new cloth flag for the school's Olympic Math team. They started with a white triangular shape with sides measuring 6 feet, 8 feet, and 12 feet. They then added an inner red triangle formed by connecting the midpoints of the sides of the first triangle. Finally they want to sew on a gold braid around the edges of the inner red triangle.

(a) Find the length of the gold braid needed to edge the inner triangle. [Show all work and explain your reasoning.]
(b) If the braid costs $\$ 4.10$ per yard, find the cost of the braid needed to the nearest cent. [Show all work.]

Given: $\overline{\mathrm{HY}}$ and $\overline{\mathrm{EV}}$ bisect each other
Prove: $\overline{\mathrm{HE}} \cong \overline{\mathrm{VY}}$

