Name: ____

CC Geometry

Constructions and Concurrence Graded Assignment

Multiple Choice – Write your answer on the line. Each question is worth 3 points.

1. The diagram below shows the construction of the bisector of $\angle ABC$. Which statement is *not* true?

- **2.** In the construction shown below, \overline{CD} is drawn. In $\triangle ABC$, \overline{CD} is the
 - 1) perpendicular bisector of side \overline{AB}
 - 2) median to side \overline{AB}
 - 3) altitude to side \overline{AB}
 - 4) bisector of $\angle ACB$

- **3.** Which geometric principle is used to justify the construction below?
 - 1) A line perpendicular to one of two parallel lines is perpendicular to the other.
 - 2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
 - 3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
 - When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

- 4. Which geometric principle is used in the construction shown below?
 - 1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
 - 2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
 - 3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
 - 4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

5. As shown below, the medians of $\triangle ABC$ intersect at *D*. If the length of \overline{BE} is 12, what is the length of \overline{BD} ?

6. In which triangle do the three altitudes intersect outside the triangle?

- 1) a right triangle 3) an obtuse triangle
- 2) an acute triangle 4) an equilateral triangle

Part II Constructions – Each question is worth 4 points. Leave all constructions marks to receive full credit.

7. Using a compass and straightedge, locate the midpoint of \overline{AB} by construction.

8. Using the line segment below, use a compass and straightedge to construct equilateral triangle ABC.

9. Construct a hexagon inscribed in circle *T* shown below.

10. Using a compass and straightedge, construct an altitude of triangle *ABC* below.

11. On the diagram below, use a compass and straightedge to construct the bisector of $\angle XYZ$.

12. Construct an angle congruent to $\angle B$ of hexagon *ABCDEF* with vertex *W*

13. Locate, by construction, the incenter of the triangle below

14. Triangle *XYZ* is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle ABC$, such that $\triangle ABC \cong \triangle XYZ$.

Ζ, x