Name: \qquad
CC Geometry Honors HW
Area and Perimeter in the Coordinate Plane

1) The coordinates of vertices A and B of $\triangle A B C$ are $A(3,4)$ and $B(3,12)$. If the area of $\triangle A B C$ is 24 square units, what could be the coordinates of point C ?
A) $(3,6)$
B) $(6,3)$
C) $(-3,8)$
D) $(8,-3)$
2) In the accompanying figure, $\triangle A B C$ has coordinates $A(0,3), B(7,3)$, and $C(7,7)$.

What is the area of $\triangle A B C$ in square units?
A) 20
B) 14
C) 16
D) 12
3) The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?
A) $5 \sqrt{10}$
B) $5 \sqrt{2}$
C) $\sqrt{10}$
D) $25 \sqrt{2}$
4) Using the coordinate grid below, find the area of a triangle whose vertices are $A(3,4), B(1,-3)$, and $C(-3,-1)$. [Show all work.]

5) Using the coordinate grid below, find the area of quadrilateral $A B C D$ with vertices $A(-4,2), B(0,5), C(3,3)$, and $D(1,-5)$. [Show all work.]

6) Using the coordinate grid below, find the area of pentagon $A B C D E$ whose vertices are $A(-3,-1), B(-2,2)$, $C(2,2), D(1,-1)$, and $E(-1,-2)$. [Show all work.]

1) C
2) B
3) A
4) $\quad 16$ units 2

$A_{\text {rectangle }}=\ell \times w=(7)(6)=42, A_{\text {triangle }}=\frac{1}{2} b h: A_{I}=\frac{1}{2}(6)(5)=15 ; A_{I I}=\frac{1}{2}(4)(2)=4 ; A_{I I I}=\frac{1}{2}(7)(2)=7 ; A_{\triangle A B C}=$
$A_{\text {rectangle }}-\left(A_{I}+A_{I I}+A_{I I I}\right)=42-(15+4+7)=16$
5) 35.5 units 2

WORK SHOWN:

$A_{\text {rectangle }}=\ell w=(10)(7)=70 ; A_{\text {triangle }}=\frac{1}{2} b h, A_{I}=\frac{1}{2}(4)(3)=6, A_{I I}=\frac{1}{2}(5)(7)=\frac{35}{2}, A_{I I I}=\frac{1}{2}(2)(8)=8, A_{I V}=\frac{1}{2}(3)(2)=3 ;$
$A_{A B C D}=A_{\text {rectangle }}-\left(A_{I}+A_{I I}+A_{I I I}+A_{I V}\right)=70-\left(6+\frac{35}{2}+8+3\right)=35.5$
6) $\quad 14$ units 2

WORK SHOWN:

$A_{\text {rectangle }}=\ell w=(4)(5)=20 ; A_{I}=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(1)(1+3)=2 ; A_{\text {triangle }}=\frac{1}{2} b h, A_{I I}=\frac{1}{2}(2)(1)=1, A_{I I I}=\frac{1}{2}(1)(3)=\frac{3}{2}, A_{I V}=\frac{1}{2}(1)(3)=\frac{3}{2} ;$
$A_{A B C D E}=A_{\text {rectangle }}-\left(A_{I}+A_{I I}+A_{I I I}+A_{I V}\right)=20-\left(2+1+\frac{3}{2}+\frac{3}{2}\right)=14$

