Name: \qquad
CC Geometry Homework

Partitioning a Line Segment

1) The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$. [Show all work.]
[The use of the set of axes below is optional.]

2) Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P ?
3) $\overline{A B}$ is a directed line segment from $A(11,-6)$ to $B(-10,8)$. Point C lies on $\overline{A B}$ and divides it in the ratio of 3 to 4 . Find the coordinates of point C. [Show all work.]
4) Point J lies on the directed segment from $P(-3,-8)$ to $Q(2,7)$. If point J divides segment $P Q$ in the ratio of 4 to 1 , then find the coordinates of point J. [Show all work.]
5) $\quad P(-2,-3)$

WORK SHOWN: $P_{x}=-6+\frac{2}{5}(4--6)=-6+\frac{2}{5}(10)=-6+4=-2 ; P_{y}=-5+\frac{2}{5}(0--5)=-5+\frac{2}{5}(5)=-5+2=-3 ; P(-2,-3)$

2) $\left(-4,-\frac{1}{2}\right)$
3) $\quad C(2,0)$

WORK SHOWN: $A(11,-6)=\left(x_{1}, y_{1}\right), B(-10,8)=\left(x_{2}, y_{2}\right)$; ratio $=\frac{3}{4}=\frac{a}{b}, k=\frac{a}{a+b}=\frac{3}{3+4}=\frac{3}{7}$; partition point $(x, y)=$ $\left(x_{1}+k\left(x_{2}-x_{1}\right), y_{1}+k\left(y_{2}-y_{1}\right)\right)=\left(11+\frac{3}{7}(-10-(11)),-6+\frac{3}{7}(8-(-6))\right)=\left(11+\frac{3}{7}(-21),-6+\frac{3}{7}(14)\right)=(11+9,-6+6)=(2,0)$
4) $J(1,4)$

WORK SHOWN: $P(-3,-8)=\left(x_{1}, y_{1}\right), Q(2,7)=\left(x_{2}, y_{2}\right)$; ratio $=\frac{4}{1}=\frac{a}{b}, k=\frac{a}{a+b}=\frac{4}{4+1}=\frac{4}{5}$; partition point $(x, y)=$ $\left(x_{1}+k\left(x_{2}-x_{1}\right), y_{1}+k\left(y_{2}-y_{1}\right)\right)=\left(-3+\frac{4}{5}(2-(-3)),-8+\frac{4}{5}(7-(-8))\right)=\left(-3+\frac{4}{5}(5),-8+\frac{4}{5}(15)\right)=(-3+4,-8+12)=(1,4)$

