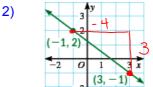

DO NOW

Find the slope of the line graphed below



Calculating the Slope of a Line

Slope (m) = $\frac{\Delta y}{\Delta x}$ = $\frac{\text{change in y}}{\text{change in x}}$ = $\frac{(y_2 - y_1)}{(x_2 - x_1)}$

$$\frac{3}{3} = \frac{-3}{-3} = \boxed{1}$$

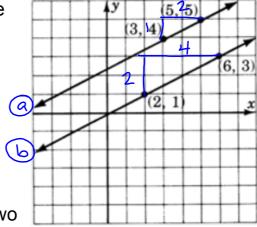
$$-\frac{3}{4} = \frac{3}{-4} \text{ or } \left[-\frac{3}{4}\right]$$

Find the slope of the line that passes through the points:

3)
$$(3, 5)$$
 and $(1, 8)$ 4) (-2,1) and (-5, 7)

$$\frac{8-5}{1-3} = \frac{3}{-2}$$

$$\frac{8-5}{1-3} = \frac{3}{-2}$$
 $\frac{7-1}{-5-(-2)} = \frac{6}{-3} = \frac{-2}{-2}$



Given a pair of parallel lines graphed below:

(a) Determine the slope of each line (graphically or algebraically)

Line a: 1

Line b: 1

(b) What can you conclude about two lines that are parallel?

Parallel lines have the same slope

Parallel Lines have the SAME slope

Given the points A(-5,-4), B(5,-2), C(7,6) and D(-3,4).

1) Is
$$\overline{AB} \parallel \overline{CD}$$
?

2) Is
$$\overline{AC} \parallel \overline{BD}$$
?

Give evidence to support your answers

AB:
$$\frac{-2-(-4)}{5-(-5)} = \frac{2}{10} = \frac{1}{5}$$

$$\frac{-2-(-4)}{5-(-5)} = \frac{2}{10} = \frac{1}{5}$$
 AC: $\frac{6-(-4)}{7-(-5)} = \frac{10}{12} = \frac{5}{6}$

CD:
$$\frac{4-6}{-3-7} = \frac{-2}{-10} = \frac{1}{5}$$
 BD: $\frac{4-(-2)}{-3-5} = \frac{6}{8} = -\frac{3}{4}$

BD:
$$\frac{4-(-2)}{-3-5} = -\frac{6}{8} = -\frac{2}{4}$$

The slope of the line \overline{EF} is -2. Find the value of k so that the the line through the points (4,k) and (-2,-1) is parallel to \overline{EF} .

$$\frac{-1-k}{-2-4} = -2$$

$$\frac{-1-k}{-1-k} = -2 \cdot -6$$

$$\frac{-1-k}{-1-k} = -2 \cdot -6$$

$$\frac{-1-k}{-1-k} = -2 \cdot -6$$

$$\frac{-1-k}{-1-k} = -2 \cdot -6$$