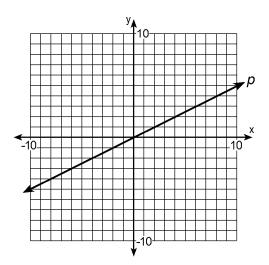
Name: ___

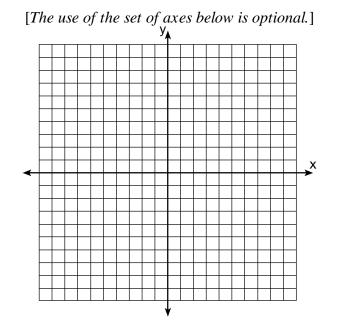
CC Geometry Homework

Line Dilations


3)

- 1) The line y = 2x + 1 is dilated through the origin by a scale factor of 2. Which one of the following describes the line of the resulting image?
 - A) The image line will be parallel to the pre-image line.
 - B) The image line will be perpendicular to the pre-image line.
 - C) The image line's slope will be twice the pre-image line's slope.
 - D) The image and the pre-image lines will coincide (be on top of each other).

2) The line represented by the equation 4y = 3x + 7 is transformed by a dilation centered at the origin. Which one of the following linear equations could represent its image?


A)	4x + 3y = 9	C)	3x + 4y = 9
B)	4x - 3y = 9	D)	3x - 4y = 9

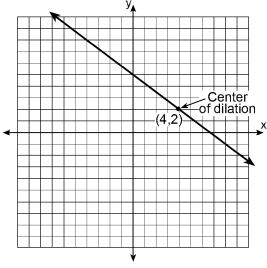
(a) Determine the equation of line *p* in the graph below.

(b) What is the equation of line *m*, the image of line *p* after a dilation of scale factor $\frac{2}{15}$ with the origin as the center. [*Show all work and explain your reasoning.*]

4) Line *n* is represented by the equation 3x + 4y = 20. Determine and state the equation of line *p*, the image of line *n*, after a dilation of scale factor $\frac{1}{3}$ centered at the point (4,2). [*Show all work and explain your answer*.]

5) Line ℓ is mapped onto line *m* by a dilation centered at the origin with a scale factor of 2. The equation of line ℓ is 3x - y = 4. Determine and state an equation for line *m*. [*Show all work*.]

1) A 2) D


3) (a)
$$y = \frac{1}{2}x;$$

(b)
$$y = \frac{1}{2}x$$

SAMPLE EXPLANATION: Line p passes through the origin, which is the center of the dilation. When a line passes through the center of dilation, any dilation will result in the same line.

4) SAMPLE EXPLANATION: 3x + 4y = 20, 4y = -3x + 20, $y = -\frac{3}{4}x + 5$; Line *p* has the equation $y = -\frac{3}{4}x + 5$ because the point of

dilation is centered on line n leaving the location of the line unchanged. The size would also not change because lines are infinite. Thus line n and line p are the same line.

5)
$$y = 3x - 8$$

WORK SHOWN: 3x - y = 4, -y = -3x + 4, y = 3x - 4; (2,2) \rightarrow (4,4), (3,5) \rightarrow (6,10); $m = \frac{10 - 4}{6 - 4} = \frac{6}{2} = 3$; y = mx + b, 10 = (3)(6) + b, 10 = 18 + b, b = -8; y = 3x - 8