\qquad
\qquad

Proving Trapezoids and Parallelograms Common Core Geometry

Exercise \#1: State the definition of a parallelogram below and then list its properties.
Definition: \qquad
Properties:

1. \qquad
2. \qquad
3. \qquad
4. \qquad

Exercise \#2: Parallelogram $A B C D$ has coordinates of $A(7,1), B(-2,-3)$, and $C(0,3)$. What must be the coordinates of point D ? Explain how you found your answer.

Trapezoid

Any quadrilateral with at least one pair of parallel sides. This means it could have either one pair of parallel sides or two pairs of parallel sides.

Exercise \#3: Quadrilateral RSTU has vertices at $R(-4,4), S(2,7), T(5,2)$ and $U(-7,-4)$. Show that $R S T U$ is a trapezoid but not a parallelogram. Use of the grid is optional (but encouraged).

Exercise \#4: On the diagram, quadrilateral RSTU is shown with vertices $R(0,3), S(9,6), T(6,1)$ and $U(-3,-2)$.
(a) Prove that $R S T U$ is a parallelogram using coordinate geometry.

(b) Show that $\overline{R U} \cong \overline{S T}$ using coordinate geometry.
(c) Using the midpoint formula, find the midpoint of the diagonals $\overline{R T}$ and $\overline{S U}$. What observation can you make about these? What does it tell you about the diagonals? Draw them in to visualize.

Midpoint of $\overline{R T}: \quad$ Midpoint of $\overline{S U}: \quad$ Observation and conclusion:

Exercise \#5: Quadrilateral $A B C D$ has vertices at $A(5,9), B(9,0), C(-1,-3)$ and $D(-5,6)$. Prove that $A B C D$ is a parallelogram using midpoints.

Below, quadrilateral $A B C D$ is plotted with coordinates $A(0,8), B(4,2), C(-3,-4)$ and $D(-7,2)$.
(a) Calculate the slope of each line segment. Show your calculation and express your answers in simplest form.
$\overline{A B}$
$\overline{B C}$:
$\overline{C D}$:
$\overline{A D}$:
(b) What conclusions can you make about parallel sides based on these slope calculations?

(c) What conclusion can you make about quadrilateral $A B C D$? Why?

Rhombus $A B C D$ has vertices $A(-1,-2), B(2,2), C(6,5)$, and $D(3,1)$. The perimeter of the rhombus is
(1) 5
(3) 20
(2) $5 \sqrt{2}$
(4) $20 \sqrt{2}$

The diagonals of square $W X Y Z$ intersect at the point $(-4,2)$. If the line with equation $y=\frac{1}{2} x+4$ contains diagonal $\overline{W Y}$, then which of the following equations is that of the line that contains diagonal $\overline{X Z}$?
(1) $y=2 x+10$
(3) $y=\frac{1}{2} x+2$
(2) $y=-2 x-6$
(4) $y=-\frac{1}{2} x$

Quadrilateral $E F G H$ has vertices at $E(-6,2), F(3,8), G(7,2)$, and $H(-2,-4)$.
(a) Calculate the slopes of all four sides of $E F G H$. Use these slopes to prove that $E F G H$ is a rectangle.
(b) Calculate the midpoints of the diagonals of $E F G H$. Why does this show that $E F G H$ is parallelogram?

(c) Calculate the lengths of the diagonals of $E F G H$. Why along with (b) does this show that $E F G H$ is a rectangle?

Given quadrilateral $E F G H$ with vertices at $E(-4,8), F(8,4), G(5,-5)$ and $H(-7,-1)$, prove using coordinate geometry that $E F G H$ is a rectangle. Note that there are a few different methods that work.

Quadrilateral $A B C D$ has vertices at $A(0,6), B(4,-1), C(-4,0)$ and $D(-8,7)$. Prove that:
(a) $A B C D$ is a rhombus using the distance formula

(b) The diagonals of $A B C D$ are perpendicular
7. Quadrilateral $E F G H$ has vertices at $E(1,8), F(6,-1), G(-4,-4)$ and $H(-9,5)$.
(a) Prove that $E F G H$ is a parallelogram.

(b) Prove that $E F G H$ is not a rhombus. (Many methods)

Square $A B C D$ has vertices at $A(-8,1), B(3,6)$, and $D(-3,-10)$. What are the coordinates of point C ?

Quadrilateral $A B C D$ has coordinates of $A(-4,2), B(4,8), C(10,0)$ and $D(2,-6)$. Using coordinate geometry, prove $A B C D$ is a square by showing it has four sides of equal length and four pairs of perpendicular sides.

Quadrilateral $A B C D$ has vertices at:

$$
A(0,7), B(10,9), C(12,-1), \text { and } D(2,-3)
$$

(a) Find the midpoint of each diagonal of $A B C D$. Based on this result, what special type of quadrilateral is $A B C D$?

Diagonal $\overline{A C}$:
Diagonal $\overline{B D}$:

(b) Calculate the slope of each diagonal of $A B C D$. Based on this result and (a), what special type of quadrilateral is $A B C D$? Explain.

Diagonal $\overline{A C}$:
Diagonal $\overline{B D}$:
(c) Calculate the length of each diagonal of $A B C D$. Based on this result along with (a) and (b), what type of special quadrilateral is $A B C D$? Explain.

Diagonal $\overline{A C}$
Diagonal $\overline{B D}$:

