DO NOW

Line segment A'B', whose endpoints are (4,-2) and (16,14), is the image of \overline{AB} after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of \overline{AB} ?

1) 5 $\sqrt{(4-16)^2+(-2-14)^2}$ 2) 10 $\sqrt{144+256}$ 4) 40 $\sqrt{400}$ A'B' = 20

Dilations of a Line on a Graph

If center of dilation is NOT ON THE LINE:

- > Parallel to the original
- > Dilate other points using center and scale factor given

If center of dilation is ON THE LINE, the image is the SAME LINE

1) The line y = 2x - 4 is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

(1)
$$y = 2x - 4$$

(2) $y = 2x - 6$
(3) $y = 3x - 4$
(4) $y = 3x - 6$
(5) $y = 3x - 6$
(7) $y = 2(0) - 4$
(8) $y = 3x - 4$
(9) $y = 4$
(1) $y = 2x - 6$
(1) $y = 2(0) - 4$
(1) $y = 2x - 6$
(2) $y = 2x - 6$
(3) $y = 3x - 6$
(4) $y = 3x - 6$
(5) $y = 3x - 6$
(7) $y = 2(0) - 4$
(8) $y = 3x - 6$
(9) $y = 3x - 6$

2) Line y = 3x - 1 is transformed by a dilation with a scale factor of 2 and centered at (3, 8). The line's image is

$$(1) y = 3x - 8$$

(2)
$$y = 3x - 4$$

(3)
$$y = 3x - 2$$

$$\underbrace{(4) y = 3x - 1}$$

3) Aliyah says that when the line 4x + 3y = 24 is dilated by a scale factor of 2 centered at the point (3,4), the equation of the dilated line is $y = -\frac{4}{3}x + 16$. Is Aliyah correct? Explain why. 3y = -4x + 24[The use of the set of axes below is optional.] $y = -\frac{4}{3}x + 8$

equation of the image + oviginal lines will be the

Slope: $\frac{y_2-y_1}{x_2-x_1}$ Midpoint: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

distance: \((x, - x2)^2 + (y, - y2)^2

point-slope form: Y-Y,=m(X-X,)