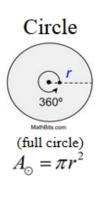

## **DO NOW**

A figure is made up of a rectangle and a semicircle as shown in the diagram below.


What is the area of the figure, to the nearest tenth of a square centimeter?




## Sector of a Circle

portion of a circle enclosed by two radii and an arc

Semi-circle

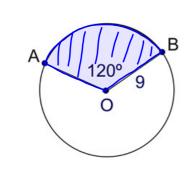






## To find the area of a sector, you are finding a fractional part of the area of the entire circle

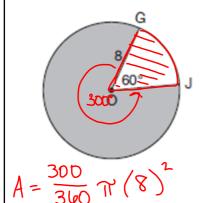
## Any Sector




(fractional part of circle)

$$A = \frac{n}{360} \cdot \pi r^2$$

where n = central angle


Find the area of the sector shown below. The radius of the circle is 9 cm. and the central angle of the sector is 120°. Express the answer to the *nearest tenth* of a square centimeter.

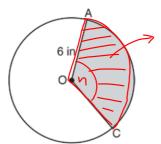


$$A = \frac{120}{360} \Upsilon V^2$$

$$A = \frac{120}{360} \pi (9)^2$$

In the diagram below of circle O, GO = 8 and  $m \angle GOJ = 60^{\circ}$ . What is the area, in terms of  $\pi$ , of the shaded region?




1) 
$$\frac{4\pi}{3}$$

2) 
$$\frac{20\pi}{3}$$

3) 
$$\frac{32\pi}{3}$$

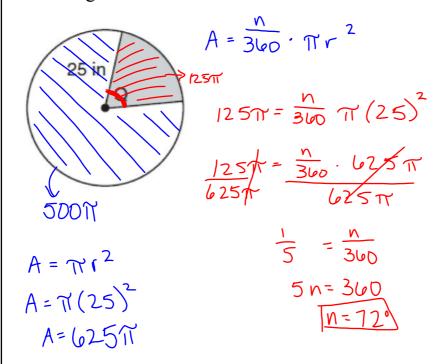
4) 
$$\frac{160\pi}{3}$$

In the diagram below of circle O, the area of the shaded sector AOC is  $12\pi$  in<sup>2</sup> and the length of OA is 6 inches. Determine and state  $m \angle AOC$ .



$$A = \frac{n}{360} \cdot \pi r^{2}$$
 $L$ 
 $12\pi = \frac{n}{360}\pi (6)^{2}$ 

$$\frac{12 \text{ pt}}{360} = \frac{12 \text{ pt}}{360} \cdot 3677$$




$$\frac{3n=360}{3}$$

$$n = 120$$

In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is  $500\pi$  in<sup>2</sup>.

Determine and state the degree measure of angle Q, the central angle of the shaded sector

