Name:
CC Geometry
Area of a Sector of a Circle

1) In a circle whose radius is 4 , what is the measure of the central angle of a sector whose area is 6π ?
2) In a circle whose radius is 6 , what is the area of a sector, in terms of π, whose central angle contains 40° ?
3) In a circle whose radius is 9 , find the measure of the central angle of a sector whose area is 27π. [Show all work.]
4) In a circle whose radius is 10 , find the area of a sector, in terms of π, whose central angle contains 72°. [Show all work.]
5) Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5. [Show all work.]
6) 135°
7) 4π
8) 120°

WORK SHOWN: $A=\left(\frac{n}{360}\right) \pi r^{2}, 27 \pi=\left(\frac{n}{360}\right) \pi(9)^{2}, 27=\frac{81 n}{360}, 9,720=81 n, n=120$
4) 20π

WORK SHOWN: $A=\left(\frac{n}{360}\right) \pi r^{2}=\left(\frac{72}{360}\right) 100 \pi=20 \pi$
5) $\frac{9 \pi}{4}$

WORK SHOWN: $40^{\circ} \cdot \frac{\pi}{180}=\frac{2 \pi}{9} ; A=\frac{1}{2} \theta r^{2}=\frac{1}{2}\left(\frac{2 \pi}{9}\right)\left(\frac{81}{4}\right)=\frac{1}{2}\left(\frac{\pi}{1}\right)\left(\frac{9}{2}\right)=\frac{9 \pi}{4}$

