Name: _____

CC Geometry

	Area of a Sector of a Circle		
1)	In a circle whose radius is 4, what is the measure of the central angle of a sector whose area is 6π ?	4)	In a circle whose radius is 10, find the area of a sector, in terms of π , whose central angle contains 72°. [Show all work.]
2)	In a circle whose radius is 6, what is the area of a sector, in terms of π , whose central angle contains 40°?		
		5)	Determine and state, in terms of π , the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5. [<i>Show all work</i> .]
3)	In a circle whose radius is 9, find the measure of the central angle of a sector whose area is 27π . [<i>Show all work</i> .]		

- 1) 135°
- 2) 4π
- 3) 120°

WORK SHOWN:
$$A = (\frac{n}{360})\pi r^2$$
, $27\pi = (\frac{n}{360})\pi (9)^2$, $27 = \frac{81n}{360}$, $9,720 = 81n$, $n = 120$

4) 20π

WORK SHOWN:
$$A = (\frac{n}{360})\pi r^2 = (\frac{72}{360})100\pi = 20\pi$$

5) $\frac{9\pi}{4}$

WORK SHOWN: 40° $\cdot \frac{\pi}{180} = \frac{2\pi}{9}; A = \frac{1}{2}\theta r^2 = \frac{1}{2}\left(\frac{2\pi}{9}\right)\left(\frac{81}{4}\right) = \frac{1}{2}\left(\frac{\pi}{1}\right)\left(\frac{9}{2}\right) = \frac{9\pi}{4}$