Name:
CC Geometry

Law of Sines Practice

1) Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole. [Show all work.]
2) Find x to the nearest integer. [Show all work.]

3) A ship at sea heads directly toward a cliff on the shoreline. The accompanying diagram shows the top of the cliff, D, sighted from two locations, A and B, separated by distance s. [Show all work.]

If $\mathrm{m} \angle D A C=30^{\circ}, \mathrm{m} \angle D B C=45^{\circ}$, and $s=30$ feet, what is the height of the cliff to the nearest foot? [Show all work.]
4) Two observers, A and B, standing 30 feet apart, watch a flying saucer hover directly above a large rock.

Use the information shown in the diagram to find the distance (x) the flying saucer hovers above the ground to the nearest tenth of a foot. [If performing multiple calculations, do not round until the last step.] [Show all work to justify your answer.]

1) 13.6 m

WORK SHOWN: $\tan 52.8=\frac{y}{x}, y=x \tan 52.8 ; \tan 34.9=\frac{y}{x+8}, y=(x+8) \tan 34.9 ; x \tan 52.8=(x+8) \tan 34.9, x \tan 52.5=$ $x \tan 34.9+8 \tan 34.9, x \tan 52.5-x \tan 34.9=8 \tan 34.9, x(\tan 52.5-\tan 34.9)=8 \tan 34.9, x=\frac{8 \tan 34.9}{(\tan 52.5-\tan 34.9)}, x=9.0037$; $\tan 52.5=\frac{y}{9.0037}, y=9.0037 \tan 52.5, y=11.8619$; height of flagpole $(h)=y+1.7, h=11.8619+1.7=13.56 \approx 13.6$
2) 66

WORK SHOWN: $90^{\circ}-\left(15^{\circ}+23^{\circ}\right)=52^{\circ} ; \frac{x}{\sin 15^{\circ}}=\frac{200}{\sin 52^{\circ}}, x=\frac{200 \sin 15^{\circ}}{\sin 52^{\circ}}=65.689 \approx 66$
3) 41 feet

WORK SHOWN: $\mathrm{m} \angle A D B=180-30-(180-45)=15^{\circ} ; \frac{a}{\sin A}=\frac{s}{\sin D}, \frac{a}{\sin 30^{\circ}}=\frac{30}{\sin 15^{\circ}}, a=\frac{30 \cdot \sin 30^{\circ}}{\sin 15^{\circ}}=57.956$; $h=a \cdot \sin 45^{\circ}=57.956 \cdot \sin 45^{\circ}=40.981 \approx 41$
4) 54.5 feet

WORK SHOWN:

For the shaded triangle: At Observer B is a linear pair of angles, so $180-80=100^{\circ}$ for the inside angle.;
$\mathrm{m} \angle U F O=180-(54+100)=26^{\circ} ; \frac{\sin 26}{30}=\frac{\sin 54}{y}, \sin 26 \cdot y=30 \cdot \sin 54,0.438 \cdot y=30 \cdot 0.809, y=\frac{24.271}{0.438}=55.365$; For the unshaded right triangle: $\sin 80=\frac{x}{55.365}, x=(0.985)(55.365)=54.524 \approx 54.5$

