Name: \qquad
CC Geometry

Law of Sines Homework

1) The accompanying diagram shows the approximate linear distances traveled by a sailboat during a race. The sailboat started at point S, traveled to points E and A, respectively, and ended at point S.

Based on the measures shown in the diagram, which equation can be used to find x, the distance from point A to point S ?
A) $\frac{65}{x}=\frac{32}{75}$
B) $\frac{x}{\sin 65^{\circ}}=\frac{\sin 75^{\circ}}{32}$
C) $\frac{x}{65}=\frac{32}{75}$
D) $\frac{\sin 65^{\circ}}{x}=\frac{\sin 75^{\circ}}{32}$
2) What additional information is needed in the accompanying diagram to solve for the value of x using the Law of Sines?

A) measures of both $\angle C$ and side $A C$
B) measure of side $A C$
C) measure of $\angle C$
D) measures of both $\angle B$ and $\angle C$
3) What is the value of the missing side x in the nonright triangle below?

A) 18.39
B) 7.83
C) 31.33
D) 4.60
4) A ship is heading for a harbor. As the ship passes through point A, the navigator sights a lighthouse at a 10° angle straight ahead. The ship continues on a straight course toward the harbor for 5 miles to reach point B. From point B, the angle to the lighthouse is found to be 30°.

How far is point B from the entrance to the harbor? [Round the answer to the nearest tenth of a mile.] [Show all work.]

1) D 2) C 3) B
2) 2.2 miles

WORK SHOWN: Let $L=$ top of light house, let $H=$ Harbor entrance; $\angle A L B=180-10-(180-30)=20 ; \frac{5}{\sin 20^{\circ}}=\frac{B L}{\sin 10^{\circ}}$, $B L=\frac{5 \sin 10^{\circ}}{\sin 20^{\circ}}=2.5386 ; \cos 30^{\circ}=\frac{B H}{2.5386}, B H=\left(\cos 30^{\circ}\right)(2.5386)=2.1985 \approx 2.2$

