\qquad
CC Geometry

Double Trig Practice

1. As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.
2. At Mogul's Ski Resort, the beginner's slope is inclined at an angle of 12.3°, while the advanced slope is inclined at an angle of 26.4°. If Rudy skis 1,000 meters down the advanced slope while Valerie skis the same distance on the beginner's slope, how much longer was the horizontal distance that Valerie covered?

1) 81.3 m
2) 231.6 m
3) 895.7 m
4) 977.0 m
3. As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.

4. A lighthouse is built on the edge of a cliff near the ocean, as shown in the accompanying diagram. From a boat located 200 feet from the base of the cliff, the angle of elevation to the top of the cliff is 18° and the angle of elevation to the top of the lighthouse is 28°. What is the height of the lighthouse, x, to the nearest tenth of a foot?

ANSWERS

1. 195
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at 5:05.

$$
\begin{array}{rlrl}
\tan 6 & =\frac{112-1.5}{x} & \tan (49+6) & =\frac{112-1.5}{y} \\
x & \approx 1051.3 & y & \approx 77.4
\end{array}
$$

2. (1)

$$
\begin{array}{ll}
\cos 12.3=\frac{\text { adjacent }}{1000} & \cos 26.4=\frac{\text { adjacent }}{1000} \\
\text { adjacent } \approx 977 \text { feet } & \text { adjacent } \approx 895.7 \text { feet }
\end{array}
$$

$$
977-895.7=81.3
$$

3. 582

$$
\left.\begin{array}{rlr}
\tan 7 & =\frac{125}{x} & \tan 16
\end{array}\right)=\frac{125}{y} \quad 1018-436 \approx 582
$$

4. 41.4

$$
\begin{array}{rlrl}
\tan 18 & =\frac{x}{200} & \tan 28 & =\frac{x}{200} \\
x & \approx 64.98 & x & \approx 106.34
\end{array}
$$

$106.34-64.98 \approx 41.4$

