Name: \qquad
CC Geometry Honors

Solving Right Triangles Practice

1) As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D. [Show all work.]
2) A ship at sea heads directly toward a cliff on the shoreline. The accompanying diagram shows the top of the cliff, D, sighted from two locations, A and B, separated by distance s. [Show all work.]

If $\mathrm{m} \angle D A C=30^{\circ}, \mathrm{m} \angle D B C=45^{\circ}$, and $s=30$ feet, what is the height of the cliff to the nearest foot? [Show all work.]
3) As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60 -foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle. [Show all work.]
4) From two points 250 yards apart on a horizontal straight road running directly toward the launch pad, the angles of elevation to the top of a rocket measure 44° and 28°. Find the height of the rocket to the nearest yard.
5) Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole. [Show all work.]

1) 582 ft

WORK SHOWN: $\tan =\frac{\text { opp }}{\text { adj }} ; \tan 7=\frac{125}{A C}, A C=\frac{125}{\tan 7}=1018.043304 ;$
$\tan 16=\frac{125}{D C}, D C=\frac{125}{\tan 16}=435.9268055 ; A D=A C-D C=582.116498 \approx 582$
2) 41 feet

WORK SHOWN: $\mathrm{m} \angle A D B=180-30-(180-45)=15^{\circ} ; \frac{a}{\sin A}=\frac{s}{\sin D}, \frac{a}{\sin 30^{\circ}}=\frac{30}{\sin 15^{\circ}}, a=\frac{30 \cdot \sin 30^{\circ}}{\sin 15^{\circ}}=57.956$; $h=a \cdot \sin 45^{\circ}=57.956 \cdot \sin 45^{\circ}=40.981 \approx 41$
3) 34.7°

WORK SHOWN: $\tan x=\frac{12}{75}, x=\tan ^{-1}\left(\frac{12}{75}\right), x=9.090276921 ; \tan y=\frac{60+12}{75}, y=\tan ^{-1}\left(\frac{72}{75}\right), y=43.83086067 ; \theta=y-x$, $\theta=43.83086067-9.090276921=34.7$
4) 296 yds .
5) 13.6 m

WORK SHOWN: $\tan 52.8=\frac{y}{x}, y=x \tan 52.8 ; \tan 34.9=\frac{y}{x+8}, y=(x+8) \tan 34.9 ; x \tan 52.8=(x+8) \tan 34.9, x \tan 52.5=$ $x \tan 34.9+8 \tan 34.9, x \tan 52.5-x \tan 34.9=8 \tan 34.9, x(\tan 52.5-\tan 34.9)=8 \tan 34.9, x=\frac{8 \tan 34.9}{(\tan 52.5-\tan 34.9)}, x=9.0037$;
$\tan 52.5=\frac{y}{9.0037}, y=9.0037 \tan 52.5, y=11.8619$; height of flagpole $(h)=y+1.7, h=11.8619+1.7=13.56 \approx 13.6$

