Name: \qquad
CC Geometry Honors

Law of Sines Homework

1) The accompanying diagram shows the approximate linear distances traveled by a sailboat during a race. The sailboat started at point S, traveled to points E and A, respectively, and ended at point S.

Based on the measures shown in the diagram, which equation can be used to find x, the distance from point A to point S ?
A) $\frac{x}{\sin 65^{\circ}}=\frac{\sin 75^{\circ}}{32}$
B) $\frac{x}{65}=\frac{32}{75}$
C) $\frac{65}{x}=\frac{32}{75}$
D) $\frac{\sin 65^{\circ}}{x}=\frac{\sin 75^{\circ}}{32}$
2) What additional information is needed in the accompanying diagram to solve for the value of x using the Law of Sines?

A) measures of both $\angle C$ and side $A C$
B) measure of side $A C$
C) measure of $\angle C$
D) measures of both $\angle B$ and $\angle C$
3) What is the value of the missing side x in the nonright triangle below?

A) 31.33
B) 4.60
C) 18.39
D) 7.83
4) In $\triangle A B C, A B=56, A C=54$, and $\mathrm{m} \angle C=37^{\circ}$. Find $\mathrm{m} \angle A$ and $\angle B$ to the nearest degree. [Justify each step of your solution.]
5) Two observers, A and B, standing 30 feet apart, watch a flying saucer hover directly above a large rock.

Use the information shown in the diagram to find the distance (x) the flying saucer hovers above the ground to the nearest tenth of a foot. [If performing multiple calculations, do not round until the last step.] [Show all work to justify your answer.]
6) A ship is heading for a harbor. As the ship passes through point A, the navigator sights a lighthouse at a 10° angle straight ahead. The ship continues on a straight course toward the harbor for 5 miles to reach point B. From point B, the angle to the lighthouse is found to be 30°.

How far is point B from the entrance to the harbor? [Round the answer to the nearest tenth of a mile.] [Show all work.]

1) D
2) C
3) D
4) $\angle B=35^{\circ}, \angle A=108^{\circ}$

B

Find $\mathrm{m} \underline{\angle} \underline{B}: \frac{\sin 37}{56}=\frac{\sin B}{54}$, Cross multiply and solve for $\angle B$ by using $\sin ^{-1} \frac{54 \sin 37}{56}=\sin ^{-1} \frac{54(0.60181)}{56}=\sin ^{-1} \frac{32.49801}{56}=$ $\sin ^{-1}(0.58032)=35.47316 \approx 35$;
Find $\mathrm{m} \leq \underline{A}$: Subtract the two know angle measures from the sum of interior angles of a triangle., $\angle A=180-37-35=108$
5) 54.5 feet

WORK SHOWN:

For the shaded triangle: At Observer B is a linear pair of angles, so $180-80=100^{\circ}$ for the inside angle.;
$\mathrm{m} \angle U F O=180-(54+100)=26^{\circ} ; \frac{\sin 26}{30}=\frac{\sin 54}{y}, \sin 26 \cdot y=30 \cdot \sin 54,0.438 \cdot y=30 \cdot 0.809, y=\frac{24.271}{0.438}=55.365$; For the unshaded right triangle: $\sin 80=\frac{x}{55.365}, x=(0.985)(55.365)=54.524 \approx 54.5$
6) $\quad 2.2$ miles

WORK SHOWN: Let $L=$ top of light house, let $H=$ Harbor entrance; $\angle A L B=180-10-(180-30)=20 ; \frac{5}{\sin 20^{\circ}}=\frac{B L}{\sin 10^{\circ}}$, $B L=\frac{5 \sin 10^{\circ}}{\sin 20^{\circ}}=2.5386 ; \cos 30^{\circ}=\frac{B H}{2.5386}, B H=\left(\cos 30^{\circ}\right)(2.5386)=2.1985 \approx 2.2$

