DO NOW

DO NOW S_{H}^{2} C_{H}^{A} T_{A}^{2} Write each trigonometric ratio for the triangle

$$\sin D = \frac{18}{30} \text{ or } \frac{3}{5}$$
 $\cos D = \frac{24}{30}$

$$\tan D = \frac{18}{24}$$

Jan 4-8:26 AM

Rewrite each trigonometric ratio as a decimal rounded to the nearest hundredth

$$\sin D = \frac{18}{30} = .6$$

$$\cos D = \frac{24}{30} = .8$$

$$\tan D = \frac{18}{24} = .75$$

Use your calculator to find: (DEGREE MODE)

$$\sin(37^\circ) = .$$
 \(\cos(37^\circ) = . \(\gamma \) \(\tan(37^\circ) = . \(\frac{1}{5} \)

What do you notice?

Finding the Angle of a Right Triangle Use INVERSE trig functions

The trig inverse of an angle *A* is written:

$$\sin^{-1} A$$
 "sine inverse of $\angle A$ " tan⁻¹ A

Jan 4-8:32 AM

1) Find $m \angle A$ if $\sin A = 0.7071$

$$m < A = sin^{-1}(.7071)$$
 $m < A = 45^{\circ}$

2) Find m \angle A if cos $A = \frac{1}{2}$

$$M < A = \cos^{-1}\left(\frac{1}{2}\right)$$

To find the measure of an ANGLE of a right triangle, use the inverse trig function!

Find $m \angle Q$ to the nearest degree

Jan 4-8:30 AM

Find $m \angle B$ to the nearest degree

Find *m*∠R to the nearest degree

$$\sin^{-1}\left(\frac{12}{16}\right)$$

Jan 4-8:48 AM

In \triangle ABC, angle C is a right angle, AC = 10, BC = 24 and AB = 26. Find:

- 1) The measure of angle A to 2) The measure of angle B to the nearest degree
 - the nearest degree

