DO NOW

If $\triangle ABC \sim \triangle PQR$, what is the perimeter of $\triangle ABC$?

Feb 18-10:30 AM

Two geometric figures are **similar** if there is a **similarity transformation** that will map one figure onto the other. This transformation is either a dilation alone or a dilation in combination with one or more rigid motions

To map $\triangle ABC$ onto $\triangle DEF$: Translate $\triangle ABC$ so that A maps to DThen dilate $\triangle A'B'C'$ centered at D, scale factor K = 2

In the following diagram, $\triangle ABC \sim \triangle A'B'C'$. Give a similarity transformation that would map $\triangle ABC$ onto $\triangle A'B'C'$

Then dilate DABC centered at C using scale factor $K = \frac{2}{3}$

Jan 2-8:12 AM

In the following diagram, $\triangle ABC \sim \triangle A'B'C'$. Give a similarity transformation that would map $\triangle ABC$ onto $\triangle A'B'C'$

In the following diagram, $\triangle ABC \sim \triangle A'B'C'$. Give a similarity transformation that would map $\triangle ABC$ onto $\triangle A'B'C'$

Dec 20-7:31 AM

In the following diagram, $\triangle ABC \sim \triangle A'B'C'$. Give a similarity transformation that would map $\triangle ABC$ onto $\triangle A'B'C'$

