Name: \qquad
CC Geometry

Dilations Practice

1) $\triangle C A T$ is the image of $\triangle D O G$ under a dilation of scale factor 6 . Which one of the following statements is true?
A) $C A=6(D O)$
B) $6(C A)=D O$
C) $6(\mathrm{~m} \angle O)=\mathrm{m} \angle A$
D) $\mathrm{m} \angle O=6(\mathrm{~m} \angle A)$
2) Which transformation represents a dilation?
A) $(8,4) \rightarrow(-8,4)$
B) $(8,4) \rightarrow(4,2)$
C) $(8,4) \rightarrow(-4,-8)$
D) $(8,4) \rightarrow(11,7)$
3) What are the coordinates of the point $(2,-4)$ under the dilation D_{-2} ?
A) $(8,-4)$
B) $(-4,8)$
C) $(-8,4)$
D) $(4,-8)$
4) The accompanying diagram shows segment $A^{\prime} B^{\prime}$, the image of segment $A B$ under a dilation of scale factor k.

What is true about the value of k ?
A) $k<0$
B) $0<k<1$
C) $k>1$
D) $k=1$
5) $\triangle A B C$ was dilated through the origin with a scale factor of k. After the dilation, $\triangle A B C$ was congruent to its image $\Delta A^{\prime} B^{\prime} C^{\prime}$. What do these results show about the value of k ?
A) $0<k<1$
B) $k=1$
C) $k>1$
D) $k<0$
6) If the dilation $D_{k}(-2,4)$ equals $(1,-2)$, the scale factor k is equal to
A) $-\frac{1}{2}$
B) $\frac{1}{2}$
C) 2
D) -2
7) Under a dilation with respect to the origin, the image of $\mathrm{P}(-15,6)$ is $\mathrm{P}^{\prime}(-5,2)$. What is the scale of dilation?
A) 10
B) 3
C) -4
D) $\frac{1}{3}$
8) In which quadrant would the image of point (5,-3) fall after a dilation using a factor of -3 ?
A) I
B) $I I$
C) $I I I$
D) $I V$
9) Is the following transformation a dilation? Explain your answer.

$$
\begin{aligned}
& A(0,4), B(3,3), C(0,5) \longrightarrow \\
& A^{\prime}(0,20), B^{\prime}(15,15), C^{\prime}(5,25)
\end{aligned}
$$

10) A^{\prime} is the image of A under a dilation with center P. Find the scale factor of this dilation if $\mathrm{PA}=3$ and $\mathrm{PA}^{\prime}=12$.
11) Determine the scale factor that was used in the following situations:
(a) A rectangle with side lengths of 4 and 6 is dilated to form a new rectangle with sides lengths of 6.8 and 10.2. [Show all work.]
(b) A triangle with side lengths of $0.8,0.5$, and 0.4 was formed by applying a dilation to a triangle with side lengths of 6.4, 4.0, and 3.2. [Show all work.]
(c) A 14 cm -long line undergoes no change to its length or position after a dilation. [Show all work.]
12) In the accompanying diagram, $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is the image of $\triangle \mathrm{ABC}$ under a dilation whose center is point P. Construct the center of dilation P.

13) Using point A as the center, dilate figure $J O A N$ with a scale factor of 3 . Label the image $J^{\prime} O^{\prime} A N^{\prime}$.

14) (a) In the diagram below, perform a dilation on line $G H$ using point G as the center and a scale factor of 0.25. [Label the image $\overline{G^{\prime} H^{\prime}}$.]

(b) The original line and the image share one point in common. What is that point?
(c) Describe the placement of the line and its image.
15) In the accompanying diagram $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is the image of $\triangle \mathrm{ABC}$ under a dilation whose center is point P . Construct the center of dilation P .

16) Under a dilation with constant of dilation k, the image of the point $(18,12)$ is $(6,4)$. What is the value of k ?
17) Dilate square $W X Y Z$ with a scale factor of -2 . Use the origin for the center of dilation and label the image appropriately.

18) Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a dilation.

Determine the coordinates of the center of dilation and the scale of dilation.

1) A
2) B
3) B
4) C
5) B
6) A
7) D
8) B
9) no

SAMPLE ANSWER. $C(0,5) \longrightarrow C^{\prime}(5,25)$ is incorrect and should be $C(0,5) \longrightarrow C^{\prime}(0,25)$.
10) 4
11) (a) 1.7

WORK SHOWN: $\frac{6.8}{4.0}=1.7, \frac{10.2}{6.0}=1.7$;
(b) 0.125

WORK SHOWN: $\frac{0.8}{6.4}=0.125, \frac{0.5}{4.0}=0.125, \frac{0.4}{3.2}=0.125$;
(c) 1

WORK SHOWN: $\frac{14}{14}=1$
12)

13)

14)
(a)

(b) Point G and point G^{\prime} are the same.;
(c) They overlap with one common endpoint.
15)

16) $\frac{1}{3}$
17) $\quad W^{\prime}(4,-4), X^{\prime}(-4,-4), Y^{\prime}(-4,4)$, and $Z^{\prime}(4,4)$
18) $(-6,-3) ; 3$

