Name: \qquad

CC Geometry

Proofs with Parallelograms Practice

Questions 1 through 4 refer to the following:

Given: Quadrilateral $A B C D$ below

1) If $\overline{A D} \| \overline{B C}$ and $\overline{A D} \cong \overline{B C}$, determine whether quadrilateral $A B C D$ is a parallelogram. [Explain your answer.]
2) If $\overline{A D} \cong \overline{D C}$ and $\overline{A B} \cong \overline{B C}$, determine whether quadrilateral $A B C D$ is a parallelogram. [Explain your answer.]
3) If $\overline{D C} \| \overline{A B}$, determine whether quadrilateral $A B C D$ is a parallelogram. [Explain your answer.]
4) If $A E=E C$ and $D E=E B$, determine whether quadrilateral $A B C D$ is a parallelogram. [Explain your answer.]

Given: $A B C D$ is a parallelogram $\overline{F G}$ bisects $\overline{D B}$

Prove: $\overline{F E} \cong \overline{E G}$
6)

Given: $A B C D$ is a parallelogram
$\overline{D E} \perp \overline{A C}$
$\overline{B F} \perp \overline{A C}$
Prove: $\overline{A E} \cong \overline{F C}$
7)

Given: $\overline{D B}$ bisects $\overline{A C}$
$\angle 1 \cong \angle 2$

Prove: $A B C D$ is a parallelogram
8)

Given: $A B C D$ is a parallelogram
$\overline{A C}, \overline{B D}$, and $\overline{G E}$ intersect at F
Prove: $\overline{E F} \cong \overline{F G}$
9)

Given: $\overline{D E} \perp \overline{A C}$

$$
\begin{aligned}
& \overline{B F} \perp \overline{A C} \\
& \overline{A E} \cong \overline{F C} \\
& \overline{D E} \cong \overline{F B}
\end{aligned}
$$

Prove: $A B C D$ is a parallelogram

1) Yes

SAMPLE EXPLANATION: If 2 sides of a quadrilateral are parallel and congruent, the quadrilateral is a parallelogram.
2) No

SAMPLE EXPLANATION: The opposite sides must be congruent.
3) No

SAMPLE EXPLANATION: Without more information, it could be a trapezoid.
4) Yes

SAMPLE EXPLANATION: If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram.
5) SAMPLE PROOF:
(1) $A B C D$ is a parallelogram, $\overline{F G}$ bisects $\overline{D B}$ (Given)
(2) $\overline{D C} \| \overline{A B}$ (Opposite sides of a parallelogram are parallel.)
(3) $\angle C D E \cong \angle A B E$ (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
(4) $\angle D E F \cong \angle B E G$ (If two lines intersect, the vertical angles are congruent.)
(5) $\overline{D B} \cong \overline{E B}$ (The bisector of a segment is a point, line or plane that divides the segment into two congruent segments.)
(6) $\triangle D E F \cong \triangle B E G(A S A \cong A S A)$
(7) $\overline{F E} \cong \overline{E G}$ (СРСТС)
6) SAMPLE PROOF:
(1) $A B C D$ is a parallelogram, $\overline{D E} \perp \overline{A C}, \overline{B F} \perp \overline{A C}$ (Given)
(2) $\angle D E A \cong \angle B F C$ (Perpendicular lines form congruent right angles.)
(3) $\overline{D A} \| \overline{B C}$ (Opposite sides of a parallelogram are parallel.)
(4) $\angle D A E \cong \angle B C F$ (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
(5) $\overline{D A} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent.)
(6) $\triangle A D E \cong \triangle C B F(A A S \cong A A S)$
(7) $\overline{A E} \cong \overline{F C}$ (CPCTC)
7) SAMPLE PROOF:
(1) $\overline{D B}$ bisects $\overline{A C}, \angle 1 \cong \angle 2$ (Given)
(2) $\overline{A E} \cong \overline{C E}$ (The bisector of a segment is a point, line or plane that divides the segment into two congruent segments.)
(3) $\angle D E A \cong \angle B E C$ (If two lines intersect, the vertical angles are congruent.)
(4) $\triangle A E D \cong \triangle C E B(A S A \cong A S A)$
(5) $\overline{A D} \cong \overline{C B}$ (CPCTC)
(6) $\overline{A D} \| \overline{C B}$ (If two lines are cut by a transversal, so that the alternate interior angles are congruent, the lines are parallel.)
(7) $A B C D$ is a parallelogram (If a quadrilateral has one pair of sides both parallel and congruent, the quadrilateral is a parallelogram.)
8) SAMPLE PROOF:
(1) $A B C D$ is a parallelogram., $\overline{A C}, \overline{B D}$, and $\overline{G E}$ intersect at F (Given)
(2) $\overline{D F} \cong \overline{B F}$ (The diagonals of a parallelogram bisect each other.)
(3) $\overline{D C} \| \overline{A B}$ (Opposite sides of a parallelogram are parallel.)
(4) $\angle B D C \cong \angle A B D$ (If two parallel lines are cut by a transvers al, the alternate interior angles are congruent.)
(5) $\angle D F E \cong \angle B F G$ (If two lines intersect, the vertical angles are congruent.)
(6) $\triangle D F E \cong \triangle B F G(A S A \cong A S A)$
(7) $\overline{E F} \cong \overline{F G}$ (СРСТС)
9) SAMPLE PROOF:
(1) $\overline{D E} \perp \overline{A C}, \overline{B F} \perp \overline{A C}, \overline{A E} \cong \overline{F C}, \overline{D E} \cong \overline{F B}$ (Given)
(2) $\angle D E A \cong \angle B F C$ (Perpendicular lines form congruent right angles.)
(3) $\triangle D E A \cong \triangle B F C(S A S \cong S A S)$
(4) $\overline{D A} \cong \overline{B C}, \angle D A E \cong \angle B C F$ (CPCTC)
(5) $\overline{D A} \| \overline{B C}$ (If two lines are cut by a transversal, so that the alternate interior angles are congruent, the lines are parallel.)
(6) $A B C D$ is a parallelogram (If a quadrilateral has one pair of sides both parallel and congruent, the quadrilateral is a parallelogram.)

