Name: \_

CC Geometry

# Proofs with Parallelograms Practice

5)

Questions 1 through 4 refer to the following:

Given: Quadrilateral ABCD below



- 1) If  $\overline{AD} \parallel \overline{BC}$  and  $\overline{AD} \cong \overline{BC}$ , determine whether quadrilateral *ABCD* is a parallelogram. [*Explain* your answer.]
- 2) If  $\overline{AD} \cong \overline{DC}$  and  $\overline{AB} \cong \overline{BC}$ , determine whether quadrilateral *ABCD* is a parallelogram. [*Explain your answer*.]
- 3) If  $\overline{DC} \parallel \overline{AB}$ , determine whether quadrilateral *ABCD* is a parallelogram. [*Explain* your answer.]
- 4) If AE = EC and DE = EB, determine whether quadrilateral ABCD is a parallelogram. [Explain your answer.]

Given: <u>ABCD</u> is a parallelogram  $\overline{FG}$  bisects  $\overline{DB}$ 

Prove:  $\overline{FE} \cong \overline{EG}$ 

4766 - 1 - Page 2



Given: ABCD is a parallelogram  $DE \perp AC$  $BF \perp AC$ 

Prove:  $\overline{AE} \cong \overline{FC}$ 

6)

7)



Given:  $\overline{DB}$  bisects  $\overline{AC}$  $\angle 1 \cong \angle 2$ 

Prove: ABCD is a parallelogram



Given:  $\underline{ABCD}$  is a parallelogram  $\overline{AC}$ ,  $\overline{BD}$ , and  $\overline{GE}$  intersect at F

Prove:  $\overline{EF} \cong \overline{FG}$ 



Given:  $\overline{DE} \perp \overline{AC}$  $\overline{BF} \perp \overline{AC}$  $\overline{AE} \cong \overline{FC}$  $\overline{DE} \cong \overline{FB}$ 



8)

9)

- 1) Yes SAMPLE EXPLANATION: If 2 sides of a quadrilateral are parallel and congruent, the quadrilateral is a parallelogram.
- No SAMPLE EXPLANATION: The opposite sides must be congruent.
- 3) No
  - SAMPLE EXPLANATION: Without more information, it could be a trapezoid.
- 4) Yes

SAMPLE EXPLANATION: If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram.

### 5) SAMPLE PROOF:

- (1) ABCD is a parallelogram,  $\overline{FG}$  bisects  $\overline{DB}$  (Given)
- (2)  $\overline{DC} \parallel \overline{AB}$  (Opposite sides of a parallelogram are parallel.)
- (3)  $\angle CDE \cong \angle ABE$  (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
- (4)  $\angle DEF \cong \angle BEG$  (If two lines intersect, the vertical angles are congruent.)
- (5)  $\overline{DB} \cong \overline{EB}$  (The bisector of a segment is a point, line or plane that divides the segment into two congruent segments.)
- (6)  $\triangle DEF \cong \triangle BEG \ (ASA \cong ASA)$
- (7)  $\overline{FE} \cong \overline{EG}$  (CPCTC)

### 6) SAMPLE PROOF:

- (1) ABCD is a parallelogram,  $\overline{DE} \perp \overline{AC}$ ,  $\overline{BF} \perp \overline{AC}$  (Given)
- (2)  $\angle DEA \cong \angle BFC$  (Perpendicular lines form congruent right angles.)
- (3)  $\overline{DA} \parallel \overline{BC}$  (Opposite sides of a parallelogram are parallel.)
- (4)  $\angle DAE \cong \angle BCF$  (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
- (5)  $\overline{DA} \cong \overline{BC}$  (Opposite sides of a parallelogram are congruent.)
- (6)  $\triangle ADE \cong \triangle CBF \ (AAS \cong AAS)$
- (7)  $\overline{AE} \cong \overline{FC}$  (CPCTC)

## 7) SAMPLE PROOF:

- (1)  $\overline{DB}$  bisects  $\overline{AC}$ ,  $\angle 1 \cong \angle 2$  (Given)
- (2)  $\overline{AE} \cong \overline{CE}$  (The bisector of a segment is a point, line or plane that divides the segment into two congruent segments.)
- (3)  $\angle DEA \cong \angle BEC$  (If two lines intersect, the vertical angles are congruent.)
- (4)  $\triangle AED \cong \triangle CEB (ASA \cong ASA)$
- (5)  $\overline{AD} \cong \overline{CB}$  (CPCTC)
- (6)  $\overline{AD} \parallel \overline{CB}$  (If two lines are cut by a transversal, so that the alternate interior angles are congruent, the lines are parallel.)
- (7) *ABCD* is a parallelogram (If a quadrilateral has one pair of sides both parallel and congruent, the quadrilateral is a parallelogram.)

#### 8) SAMPLE PROOF:

- (1) ABCD is a parallelogram,  $\overline{AC}$ ,  $\overline{BD}$ , and  $\overline{GE}$  intersect at F (Given)
- (2)  $\overline{DF} \cong \overline{BF}$  (The diagonals of a parallelogram bisect each other.)
- (3)  $\overline{DC} \parallel \overline{AB}$  (Opposite sides of a parallelogram are parallel.)
- (4)  $\angle BDC \cong \angle ABD$  (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
- (5)  $\angle DFE \cong \angle BFG$  (If two lines intersect, the vertical angles are congruent.)
- (6)  $\triangle DFE \cong \triangle BFG \ (ASA \cong ASA)$
- (7)  $\overline{EF} \cong \overline{FG}$  (CPCTC)

## 9) SAMPLE PROOF:

- (1)  $\overline{DE} \perp \overline{AC}, \overline{BF} \perp \overline{AC}, \overline{AE} \cong \overline{FC}, \overline{DE} \cong \overline{FB}$  (Given)
- (2)  $\angle DEA \cong \angle BFC$  (Perpendicular lines form congruent right angles.)
- (3)  $\triangle DEA \cong \triangle BFC \ (SAS \cong SAS)$

- (4)  $\overline{DA} \cong \overline{BC}, \angle DAE \cong \angle BCF$  (CPCTC)
- (5)  $\overline{DA} \parallel \overline{BC}$  (If two lines are cut by a transversal, so that the alternate interior angles are congruent, the lines are parallel.)
- (6) *ABCD* is a parallelogram (If a quadrilateral has one pair of sides both parallel and congruent, the quadrilateral is a parallelogram.)