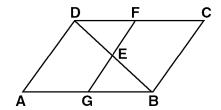

Name:	

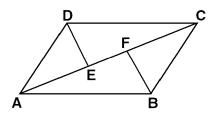
CC Geometry Honors

Proofs with Parallelograms


Questions 1 through 4 refer to the following:

Given: Quadrilateral ABCD below

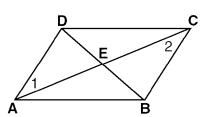
- 1) If $\overline{AB} \parallel \overline{CD}$ and $\overline{AD} \cong \overline{BC}$, determine whether quadrilateral ABCD is a parallelogram. [Explain your answer.]
- 2) If AE = EC and DE = EB, determine whether quadrilateral ABCD is a parallelogram. [Explain your answer.]
- 3) If $\overline{AD} \parallel \overline{BC}$ and $\overline{AD} \cong \overline{BC}$, determine whether quadrilateral ABCD is a parallelogram. [Explain your answer.]
- 4) If $\overline{AD} \cong \overline{DC}$ and $\overline{AB} \cong \overline{BC}$, determine whether quadrilateral ABCD is a parallelogram. [Explain your answer.]


5)

Given: $\frac{ABCD}{FG}$ is a parallelogram $\frac{ABCD}{FG}$ bisects $\frac{DB}{DB}$

Prove: $\overline{FE} \cong \overline{EG}$

6)

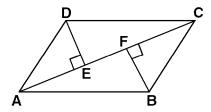


Given: <u>ABCD</u> is a parallelogram

 $\frac{\overline{DE} \perp \overline{AC}}{BF} \perp \overline{AC}$

Prove: $\overline{AE} \cong \overline{FC}$

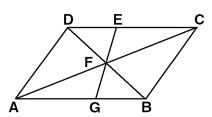
7)



Given: \overline{DB} bisects \overline{AC}

 $\angle 1 \cong \angle 2$

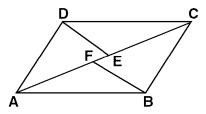
Prove: ABCD is a parallelogram


8)

Given: $\overline{DE} \perp \overline{AC}$ $\overline{BF} \perp \overline{AC}$ $\overline{AE} \cong \overline{FC}$ $\overline{DE} \cong \overline{FB}$

Prove: ABCD is a parallelogram

9)



Given: <u>ABCD</u> is a parallelogram

 \overline{AC} , \overline{BD} , and \overline{GE} intersect at F

Prove: $\overline{EF} \cong \overline{FG}$

10)

Given: $\frac{\text{Parallelogram } ABCD}{\overline{AE}} \cong \overline{FC}$

Prove: $\triangle DEC \cong \triangle BFA$

- 1) No
 - SAMPLE EXPLANATION: The same pair of sides must be parallel and congruent.
- 2) Yes
 - SAMPLE EXPLANATION: If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram.
- 3) Yes
 - SAMPLE EXPLANATION: If 2 sides of a quadrilateral are parallel and congruent, the quadrilateral is a parallelogram.
- 4) No
 - SAMPLE EXPLANATION: The opposite sides must be congruent.
- 5) SAMPLE PROOF:
 - (1) ABCD is a parallelogram, \overline{FG} bisects \overline{DB} (Given)
 - (2) $\overline{DC} \parallel \overline{AB}$ (Opposite sides of a parallelogram are parallel.)
 - (3) $\angle CDE \cong \angle ABE$ (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
 - (4) $\angle DEF \cong \angle BEG$ (If two lines intersect, the vertical angles are congruent.)
 - (5) $\overline{DB} \cong \overline{EB}$ (The bisector of a segment is a point, line or plane that divides the segment into two congruent segments.)
 - (6) $\triangle DEF \cong \triangle BEG \ (ASA \cong ASA)$
 - (7) $\overline{FE} \cong \overline{EG}$ (CPCTC)
- 6) SAMPLE PROOF:
 - (1) ABCD is a parallelogram, $\overline{DE} \perp \overline{AC}$, $\overline{BF} \perp \overline{AC}$ (Given)
 - (2) $\angle DEA \cong \angle BFC$ (Perpendicular lines form congruent right angles.)
 - (3) $\overline{DA} \parallel \overline{BC}$ (Opposite sides of a parallelogram are parallel.)
 - (4) $\angle DAE \cong \angle BCF$ (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
 - (5) $\overline{DA} \cong \overline{BC}$ (Opposite sides of a parallelogram are congruent.)
 - (6) $\triangle ADE \cong \triangle CBF \ (AAS \cong AAS)$
 - (7) $\overline{AE} \cong \overline{FC}$ (CPCTC)

7) SAMPLE PROOF:

- (1) \overline{DB} bisects \overline{AC} , $\angle 1 \cong \angle 2$ (Given)
- (2) $\overline{AE} \cong \overline{CE}$ (The bisector of a segment is a point, line or plane that divides the segment into two congruent segments.)
- (3) $\angle DEA \cong \angle BEC$ (If two lines intersect, the vertical angles are congruent.)
- (4) $\triangle AED \cong \triangle CEB \ (ASA \cong ASA)$
- (5) $\overline{AD} \cong \overline{CB}$ (CPCTC)
- (6) $\overline{AD} \parallel \overline{CB}$ (If two lines are cut by a transversal, so that the alternate interior angles are congruent, the lines are parallel.)
- (7) ABCD is a parallelogram (If a quadrilateral has one pair of sides both parallel and congruent, the quadrilateral is a parallelogram.)
- 8) SAMPLE PROOF:
 - (1) $\overline{DE} \perp \overline{AC}, \overline{BF} \perp \overline{AC}, \overline{AE} \cong \overline{FC}, \overline{DE} \cong \overline{FB}$ (Given)
 - (2) $\angle DEA \cong \angle BFC$ (Perpendicular lines form congruent right angles.)
 - (3) $\triangle DEA \cong \triangle BFC \ (SAS \cong SAS)$
 - (4) $\overline{DA} \cong \overline{BC}$, $\angle DAE \cong \angle BCF$ (CPCTC)
 - (5) $\overline{DA} \parallel \overline{BC}$ (If two lines are cut by a transversal, so that the alternate interior angles are congruent, the lines are parallel.)
 - (6) ABCD is a parallelogram (If a quadrilateral has one pair of sides both parallel and congruent, the quadrilateral is a parallelogram.)
- 9) SAMPLE PROOF:
 - (1) ABCD is a parallelogram., \overline{AC} , \overline{BD} , and \overline{GE} intersect at F (Given)
 - (2) $\overline{DF} \cong \overline{BF}$ (The diagonals of a parallelogram bisect each other.)
 - (3) $\overline{DC} \parallel \overline{AB}$ (Opposite sides of a parallelogram are parallel.)

- (4) $\angle BDC \cong \angle ABD$ (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
- (5) $\angle DFE \cong \angle BFG$ (If two lines intersect, the vertical angles are congruent.)
- (6) $\triangle DFE \cong \triangle BFG \ (ASA \cong ASA)$
- (7) $\overline{EF} \cong \overline{FG}$ (CPCTC)

10) SAMPLE SAS PROOF:

- (1) Parallelogram ABCD, $\overline{AE} \cong \overline{FC}$ (Given)
- (2) $\overline{DC} \cong \overline{AB}$ (Opposite sides of a parallelogram are congruent.)
- (3) $\overline{DC} \parallel \overline{AB}$ (Opposite sides of a parallelogram are parallel.)
- (4) $\angle BAF \cong \angle DCE$ (If two parallel lines are cut by a transversal, the alternate interior angles are congruent.)
- (5) $\overline{FE} \cong \overline{FE}$ (Reflexive Property of Equality)
- (6) $AE FE = FC FE, \overline{AF} \cong \overline{CE}$ (Subtraction Property of Equality)
- (7) $\triangle DEC \cong \triangle BFA \ (SAS \cong SAS)$