

$$9x + 20 = 3x + 50$$
 $6x + 20 = 50$
 $6x = 30$
 $x = 5$

Dec 10-10:13 AM

4.1 Trapezoid and Parallelogram Properties.notebook

Given: $\overline{RS} \parallel \overline{BA}; \overline{RS} \cong \overline{BA}$ $\overline{RTA}; \overline{STB}$

Prove: \overline{RA} and \overline{SB} bisect each other

Statements

Reasons

- 1. $\overline{RS} \parallel \overline{BA}; \overline{RS} \cong \overline{BA}$ $\overline{RTA}; \overline{STB}$
- 1. Given
- 2. $\angle R \cong \angle A$ $\angle S \cong \angle B$
- 2. If $2 \parallel$ lines are cut by a trans., the alt. int. $\angle s$ are \cong .
- 3. $\Delta RST \cong \Delta ABT$
- 3. ASA: If $2 \angle s$ and incl. side of 1Δ are \cong to the corres. parts of another Δ , the Δs are \cong .
- 4. $\overline{BT} \cong \overline{ST}$; $\overline{RT} \cong \overline{AT}$
- 4. CPCTC: Corres. parts of \cong Δs are \cong .
- 5. \overline{RA} bis \overline{SB} ; \overline{SB} bis \overline{RA}
- A segment bisector divides a a segment into 2 ≅ segments.

Nov 20-8:28 AM

Given: $\overline{MH} \cong \overline{TA}$ $\angle M \cong \angle T$ $\angle MHA \cong \angle TAH$

Prove: $\overline{HT} \parallel \overline{MA}$

Statements

Reasons

- 1. $\overline{MH} \cong \overline{TA}$ $\measuredangle M \cong \measuredangle T$ $\measuredangle MHA \cong \measuredangle TAH$
- 1. Given
- 2. $\Delta MHA \cong \Delta TAH$
- 2. ASA: If $2 \angle s$ and the included side of 1Δ are \cong to corres. parts of another Δ , the Δ s are \cong .
- 3. $\angle MAH \cong \angle THA$
- 3. CPCTC: Corres. parts of $\cong \Delta s$ are \cong .

4. $\overline{HT} \parallel \overline{MA}$

If 2 lines are cut by a trans.
 and the alt. int. ∠s are ≅,
 the lines are parallel.

Trapezoid

A quadrilateral in which AT LEAST one pair of sides are parallel

AB // CD

Consecutive angles are supplementary

(between the parallel lines)

Dec 21-10:25 AM

Isosceles Trapezoid

A trapezoid in which the nonparallel sides are CONGRUENT

$$QT \cong SR$$

The base angles are also congruent:

$$\angle Q \cong \angle R$$

and
$$\angle T \cong \angle S$$

In the diagram below, \overline{AB} and \overline{CD} are bases of trapezoid ABCD.

(Not drawn to scale)

If $m\angle B = 123$ and $m\angle D = 75$, what is $m\angle C$?

Nov 20-1:19 PM

A parallelogram is a quadrilateral that has two pairs of opposite sides parallel

A parallelogram is a TRAPEZOID

Properties of Parallelograms

- Opposite SIDES are congruent $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$
- Opposite ANGLES are congruent
 ∠A ≅ ∠C and ∠B ≅ ∠D

Trapezoids

- Two consecutive angles are supplementary
 Fx: ∠A +∠B = 180
- The diagonals bisect each other

Dec 10-10:20 AM

The diagonals of parallelogram ABCD intersect at E. If AE = 5x - 3 and EC = 15 - x, find AC.

$$AE = 5(3) - 3$$
 $AE = 12$
 $EC = 15 - 3$
 $EC = 12$
 $AE \cong CE$
 $AC = 24$
 $AE \cong CE$
 $AC = 24$
 $AE \cong CE$
 $AC = 3$

In parallelogram ABCD, $m\angle A = x + 44$ and $m\angle B = 3x$. Find the measure of each angle of the parallelogram.

$$3x + x + 44 = 180$$

 $4x + 44 = 180$
 $4x = 136$
 $x = 34$

Dec 10-10:42 AM

In parallelogram ABCD shown below, the <u>bisectors</u> of $\angle ABC$ and $\angle DCB$ meet at E, a point on \overline{AD} .

If $m\angle A = 68^{\circ}$, determine and state $m\angle BEC$.