DO NOW

Given that line r is the perpendicular bisector of BC and AD, which of the following would be used to justify that $\triangle ABE$ is congruent to $\triangle DCE$?

- (1) a reflection of $\triangle ABE$ across the line \overrightarrow{AD}
- (2) a 180° rotation of $\triangle ABE$ about point E
- (3) a translation of $\triangle ABE$ in the direction of \overrightarrow{BC} by a distance of BE.
- (4) a reflection of $\triangle ABE$ across line r.

Point Symmetry

A figure has point symmetry if you <u>rotate</u> it 180 degrees about a fixed point and the figure stays the same

Does the figure have point symmetry, line symmetry or both?

A figure has rotational symmetry if the figure is its own image under a rotation

All regular polygons (all sides and angles congruent) have rotational symmetry!

$$\frac{360}{n}$$

where n is the number of sides of the polygon

If a regular pentagon is rotated counterclockwise around its center, find the minimum number of degrees it must be rotated to carry the pentagon onto itself

$$\frac{360}{5} = \overline{72^{\circ}}$$

$$R_{144^{\circ}}$$

A regular decagon is rotated *n* degrees about its center, carrying the decagon onto itself. The value of *n* could be

$$\frac{360}{10} = 36^{\circ}$$

Point P is at the center of equilateral triangle ABC

Under a rotation about P for which the image of A is B, find:

- **c.** The image of \overline{CA} . \overline{AB}
- **d.** The image of $\angle CAB$.

