DO NOW

In the diagram below of circle O, points K, A, T, I, and E are on the circle, $\triangle KAE$ and $\triangle ITE$ are

drawn, $\widehat{KE} \cong \widehat{EI}$, and $\angle EKA \cong \angle EIT$.

Which statement about $\triangle KAE$ and $\triangle ITE$ is always true?

- My They are neither congruent nor similar.
- 2) They are similar but not congruent.
- M They are right triangles.
- 4) They are congruent.

0

Apr 11-10:20 AM

Graphing Circles

To graph *any* circle, all you need is a center (x, y) and a radius

EX: Graph a circle with a center at (0, 0) and a radius of 3

Apr 11-10:23 AM

Graph the circle with a center of (3, -2) and a radius of 5

Apr 12-10:29 PM

Equation of a Circle

In general, the equation of a circle is: $(x-x_1)^2 + (y-y_1)^2 = c^2$

$$(x-x_1)^2 + (y-y_1)^2 = r^2$$

 $(x-h)^2 + (y-k)^2 = r^2$

(h, k) is the CENTER; r is the RADIUS

EX: What is the equation of a circle whose center is (4, 1) with a radius of 2?

$$(x-4)^2 + (y-1)^2 = 4$$

Write the equation of the circle with the given center and radius:

1)
$$(4, -2)$$
; $r = 8$
 $(x-4)^2 + (y-2)^2 = 8^2 \rightarrow (x-4)^2 + (y+2)^2 = 64$

2)
$$(0, 0)$$
; $r = 7$
 $(x-0)^2 + (y-0)^2 = 49 \rightarrow \sqrt{x^2 + y^2} = 49$

3) (-2, 0);
$$r = 1$$

 $(y+2)^2 + (y-0)^2 = 1 \rightarrow (x+2)^2 + y^2 = 1$

Apr 12-10:29 PM

Identify the center and radius of each circle:

$$(x-h)^{2} + (y-k)^{2} = y^{2}$$
1) $(x-1)^{2} + (y+3)^{2} = 4$

$$c : (1,-3)$$

$$y = 2$$

2)
$$x^2 + y^2 = 81$$

3)
$$x^2 + (y - 3)^2 = 10$$

 $c: (0, 3)$
 $r = \sqrt{10}$

Graph the circle: $(x + 3)^2 + y^2 = 16$

Center: (-3, D)

Radius: 4

Apr 11-10:47 AM

Is the point (4, 1) on the circle whose equation is $(x - 1)^2 + (y - 3)^2 = 4$?

$$(4-1)^{2} + (1-3)^{2} = 4$$

$$(3)^{2} + (-2)^{2} = 4$$

c:(1,3) v=2

