DO NOW

Given m \widehat{AC} = 87°, find the m $\angle BCA$.

Mar 15-10:17 AM

Inscribed Angles

An angle whose vertex is on the circle and whose sides are chords of the circle

The measure of an inscribed angle is one-halfthe measure of its intercepted arc

$$m\angle ABC = \frac{1}{2}\widehat{AC}$$

1) Find $m \angle ABC$

2) Find \widehat{mDF}

Mar 16-11:54 AM

In circle O, $\widehat{mDE} = 5x^{\circ}$, $\widehat{mDF} = 4x^{\circ}$ and $\widehat{mEF} = 3x^{\circ}$. Find $m\angle DEF$.

$$3x + 4x + 5x = 360$$

$$\frac{12x}{12} = \frac{360}{12}$$

$$x = 30$$

Inscribed Angles

An angle inscribed in asemicircle is a right angle

$$m\angle ABC = \frac{1}{2}m\widehat{ADC}$$

 $m\angle ABC = \frac{1}{2}(80^{\circ})$

If two inscribed angles intercept the same arc, then they are equal

$$m \angle BAD = m \angle BCD$$

Mar 15-10:48 AM

Triangle ABC is inscribed in circle O with the measure of \widehat{AB} equal to 100°. What is the measure of $\angle BAC$?

MLABC = 90°

Find the m∠*FJH*

$$5z = 4z + 9$$

 $z = 9$

Apr 30-6:58 AM

 \overline{AC} and \overline{BD} intersect at E in circle O If $m \angle B = 42$ and $m \angle AEB = 104$, find:

$$\mathbf{a.} \, \mathbf{m} \angle A = 34$$

b.
$$\widehat{mBC} = 68$$
°

$$\mathbf{c.} \ \mathbf{m}\widehat{AD} = 84$$

