Name: $\qquad$
CC Geometry
Parallel Lines Cut by a Transversal

1) In the accompanying diagram, parallel lines $\ell$ and $m$ are cut by transversal $t$.


Which statement about angles 1 and 2 must be true?
A) $\angle 1 \cong \angle 2$
B) $\angle 1$ is a complement to $\angle 2$
C) $\angle 1$ and $\angle 2$ are right angles
D) $\angle 1$ is a supplement to $\angle 2$
2) In the accompanying diagram, $\overleftrightarrow{\mathrm{AB}}$ is parallel to $\stackrel{\overleftrightarrow{C D}}{ }$, and $\overleftrightarrow{\mathrm{EF}}$ is a transversal.


If $\mathrm{m} \angle \mathrm{BEF}=(2 x+60)^{\circ}$ and $\mathrm{m} \angle \mathrm{DFE}=(3 x+20)^{\circ}$, what is $\mathrm{m} \angle \mathrm{BEF}$ ?
A) $100^{\circ}$
B) $40^{\circ}$
C) $20^{\circ}$
D) $140^{\circ}$
3) In the accompanying diagram, line $\ell$ is parallel to line $m$ and line $t$ is a transversal.


If $\mathrm{m} \angle 1=(2 x+20)^{\circ}$ and $\mathrm{m} \angle 2=(4 x+10)^{\circ}$, what is the number of degrees in $\mathrm{m} \angle 3$ ?
4) In the accompanying diagram, $\stackrel{\rightharpoonup}{\mathrm{AB}}$ is parallel to $\stackrel{\rightharpoonup}{\mathrm{CD}}$, and transversal $\overleftrightarrow{\mathrm{EH}}$ intersects $\overleftrightarrow{\mathrm{AB}}$ and $\overleftrightarrow{\mathrm{CD}}$ at F and G , respectively.


If $\mathrm{m} \angle \mathrm{AFG}=(2 x+10)^{\circ}$ and $\mathrm{m} \angle \mathrm{FGD}=(x+20)^{\circ}$, find the value of $x$.

Questions 5 and 6 refer to the following:

In the figure below, $\overleftrightarrow{\mathrm{AB}} \| \overrightarrow{\mathrm{CD}}$.

5) If $\mathrm{m} \angle 4=(2 x+10)^{\circ}$ and $\mathrm{m} \angle 6=(3 x-20)^{\circ}$, find the value of $x$.
6) If $\mathrm{m} \angle 2=(3 x+15)^{\circ}$ and $\mathrm{m} \angle 6=(5 x-5)^{\circ}$, find the value of $x$.

1) $D$ 2) $A$
2) $70^{\circ}$
3) 10
4) 38
5) 10
